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Introduction

Peripheral nerve defects often result from trauma or surgery for a 
malignant tumor in clinical practice. An autologous nerve graft is 
the first choice for the reconstruction of peripheral nerve defects. 
However, it may cause donor site morbidities such as hypoesthesia, 
numbness, and pain caused by amputated neuroma. Although an 
artificial nerve conduit has the advantage of no donor site morbidi-
ties, treatment outcomes are inferior to those of autologous nerve 
graft [1,2]. This is because the conduit only acts as scaffolds for 
nerve regeneration, while cells, growth factors, and scaffolds are 
generally necessary for efficient tissue regeneration. Thus, various 
types of stem cells [3] or growth factors [4] have been used with the 
artificial nerve conduit to enhance the nerve regeneration 
potential.

In recent years, a technique in which a small fragment cut from 
human amniotic membrane (HAM) was wrapped around the injured 
nerve has been reported in a rat sciatic nerve injury model for the 
purpose of promoting peripheral nerve regeneration. HAM is the 
innermost layer of the placenta and enwraps the fetus in the amniotic 
cavity. It consists of two layers: the amnion and the chorion. This 
avascular tissue contains amniotic epithelial cells and amniotic 
mesenchymal stem cells [5]. In addition, HAM is rich in growth factors 
such as basic fibroblast growth factor and transforming growth factor 
α [6]. Previous studies have reported that fresh HAM wrapping 
reduced scar formation, which inhibited axonal regeneration, and 

promoted peripheral nerve regeneration in rat sciatic nerve adhesion 
models [7,8].

In the treatment of peripheral nerve defects, nerve regeneration 
may be further promoted by adding HAM-containing cells and 
growth factors to the artificial nerve conduit. The purpose of this 
study was to investigate the effect of a combined application using 
fresh HAM wrapping and a polyglycolic acid tube filled with collagen 
(PGA-c) for a rat sciatic nerve defect model.

Material and methods

Animals

This study was approved by Biomedical Research Center of Nagasaki 
University (approval number: 2005271634). A total of 15 Sprague 
Dawley rats (6-week-old males) weighing 180–225 g (Japan SLC) were 
used. All invasive procedures were performed under anesthesia with 
intraperitoneal administration of medetomidine (0.375 mg/kg), 
midazolam (2 mg/kg), and butorphanol (0.25 mg/kg). At the end of 
this study, all rats were sacrificed with the use of carbon dioxide.

HAM preparation

Fresh human placenta was collected immediately after cesarean 
section in accordance with the Declaration of Helsinki and with the 
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approval of the Institutional Ethics Committee. Informed consent 
had been obtained from the volunteer at the Amniotic Membrane 
Bank in Nagasaki University Hospital in advance. This placenta was 
from a woman with a history of laparoscopic cervical cerclage but 
no history of infectious disease such as hepatitis, HIV, and venereal 
disease. HAM was manually removed from the placenta. All blood 
clots and debris were removed by washing the tissue with saline. 
The HAM was cut into 14 × 7 mm fragments and then washed with 
phosphate-buffered saline (PBS) for 30 min three times. The HAM 
was transferred into a rat sciatic nerve defect model within 24 h 
after delivery.

Surgical procedure

The right sciatic nerves of rats were exposed under general anesthe-
sia. The nerves were sufficiently dissected in the area between the sci-
atic notch and its bifurcation. The animals were randomly divided into 
three groups: (1) PGA-c group (n = 5), where 8 mm of the sciatic nerve 
was removed and a 10 mm PGA-c (Nerbridge®, Toyobo, Japan) bridged 
the gap; (2) PGA-c/HAM group (n = 5), where 8 mm of the sciatic nerve 
was removed and a 10 mm PGA-c bridged the gap, then HAM (14 × 7 
mm) was wrapped around it; and (3) Sham group (n = 5), where only 
the sciatic nerve was dissected. The distal and proximal sciatic nerve 
stumps were pulled 1 mm into each side of the PGA-c tube and 
sutured with two horizontal mattress sutures using 10-0 nylon. In the 
PGA-c/HAM group, HAM was wrapped around the PGA-c tube so that 
the chorion side was in contact with the tube, then HAM was sutured 
to itself at four points (Figure 1(a), 1(b)). Finally, the skin was closed 
with 4-0 nylon sutures. The same surgeon performed all procedures.

Walking-track assessment

Footprints of each rat hind paw while walking were taken at 12 weeks 
after surgery. The toe spread (TS), intermediate toe spread (ITS), and 

paw length (PL) of both limbs (E: experimental side; N: normal side) 
were measured; then the sciatic functional index (SFI) was calculated 
using the following formula [9]:

SFI = –38.1 × (EPL – NPL) / NPL + 109.5 × (ETS – NTS) / NTS + 13.3 × 
(EITS – NITS) / NITS – 8.8

Electromyographic assessment

Electromyographic analysis was performed at 12 weeks postopera-
tion. Bipolar stimulating electrodes were placed under the sciatic 
nerve 5 mm proximal to the PGA-c. The compound muscle action 
potential (CMAP) and terminal latency (TL) were recorded using 
needle electrodes inserted into the middle of the tibialis anterior 
muscle and its tendon using an electromyogram (USE-100, UNIQUE 
MEDICAL, Japan).

Histological assessment of the nerve

Rats were sacrificed at 12 weeks postoperatively. The sciatic nerve, 
including the nerve regeneration site, was harvested at a length of 
10 mm. Specimens were soaked in 2.5% glutaraldehyde as prefixa-
tion and then soaked in 2% osmium tetroxide as postfixation. 
Samples were dehydrated using serial ethanol dilutions (50, 70, 80, 
90, 95, 99.5, and 100%). Ultra-thin (80-nm) sections at the mid-
point of the regeneration site transversally were impregnated with 
epoxy resin. These sections were observed under a transmission 
electron microscope (TEM) (JEM-1200EX, JEOL, Japan). Five ran-
dom fields of each nerve at 1000× magnification were selected 
and observed by an observer who was blinded to the treatment 
groups. In addition, 20 myelinated axons were selected from each 
field. The myelinated axon perimeter was measured using the 
ImageJ software (National Institute of Health), and g-ratio (axon 
perimeter/fiber perimeter) was calculated. These indicators repre-
sented the promotion of myelination.

Figure 1. Human amniotic membrane (HAM) preparation and surgical procedure. Fresh HAM was delivered from a healthy woman. After washing and making into 
14 mm × 7 mm fragments (a), the HAM was wrapped around a 10-mm polyglycolic acid tube filled with collagen (PGA-c) bridging 8-mm sciatic nerve defect (b). 
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Statistical assessment

Experimental data were expressed as means ± standard error and 
analyzed using one-way analysis of variance (ANOVA). To detect dif-
ference between groups, data were analyzed using the Tukey post-
hoc test. p-Values of < 0.05 were defined as significant. The statistical 
analyses were carried out with EZR (Saitama Medical Center, Jichi 
Medical University, Saitama, Japan) [10].

Results

Walking-track recovery

First, we calculated the SFI to evaluate motor function recovery. An 
SFI of 0 represents normal, and −100 represents complete dysfunc-
tion. Compared to the Sham group, SFIs of both the PGA-c and PGA-c/
HAM groups were far lower. No significant difference was observed 
between the PGA-c group and the PGA-c/HAM group (−78 ± 6.7 vs. 
−69 ± 7.6, p = 0.59). This suggests that there was no major difference 
in functional recovery between the two groups (Figure 2).

Electromyographic recovery

Next, we performed electromyographic assessments. TL in the PGA-c/
HAM group was significantly shorter than that in the PGA-c group (3.4 
± 0.31 ms vs. 6.6 ± 0.72 ms, p < 0.001), but they were longer than that in 
the Sham group (1.4 ± 0.058 ms) (Figure 3(a)). Simultaneously, CMAP in 
the PGA-c/HAM group was significantly higher than that in the PGA-c 
group (0.19 ± 0.025 mV vs. 0.072 ± 0.027 mV, p < 0.01) although it did 
not reach that in the Sham group (0.32 ± 0.013 mV) (Figure 3(b)). These 
results indicate that the combination of PGA-c and HAM promotes sig-
nificantly better electromyographic recovery than PGA-c alone.

Histological recovery of the nerve

We performed histomorphometric assessments of the regenerated 
nerve using a TEM (Figure 4(a–c)). The myelinated axon perimeter in 
the PGA-c/HAM group was significantly longer than that in the PGA-c 
group (15 ± 1.3 µm vs. 9.8 ± 0.39 µm, p < 0.01) (Figure 4(d)), but they 
were shorter than that in the Sham group (33 ± 0.94 µm). Next, g-ra-
tio, which is a highly reliable indicator for assessing myelination, was 
calculated. A g-ratio between 0.6 and 0.7 indicates quality and matu-
ration of myelin sheath. The g-ratio in the PGA-c/HAM group was sig-
nificantly lower than that in the PGA-c group (0.69 ± 0.0089 vs. 0.78 ± 
0.014, p < 0.001) (Figure 4(e)), although they were still higher than 

Figure 2. Walking-track recovery was evaluated by the sciatic functional 
index (SFI) value at 12 weeks postoperatively. Each bar represents mean and 
standard error of five animals. *p < 0.05. HAM: human amniotic membrane; 
PGA-c: polyglycolic acid tube filled with collagen.

Figure 3. Electromyographic recovery at 12 weeks postoperatively. Terminal latency (TL) (a) and compound muscle action potential (CMAP) (b) of each group 
are shown. Each bar represents mean and standard error of five animals. *p < 0.05. HAM: human amniotic membrane; PGA-c: polyglycolic acid tube filled with 
collagen.
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that in the Sham group (0.058 ± 0.0085). The distribution of myeli-
nated axon perimeter in the PGA-c/HAM group was shifted toward 
longer compared with the PGA-c group (Figure 4(f )).

Discussion

This study evaluated the effect of fresh HAM on PGA-c in peripheral 
nerve regeneration using a rat sciatic nerve defect model. Our results 
showed that fresh HAM wrapping significantly recovered myelinated 
axon perimeter and g-ratio. These findings suggested that fresh HAM 
wrapping would contribute to axonal maturation and myelination 
during peripheral nerve regeneration. In addition, this histological 
recovery of the nerve may have contributed to the significantly better 
neuromuscular recovery as represented by the TL value and the 
CMAP value. However, no significantly better recovery was observed 
in the PGA-c/HAM group compared to the PGA-c group with regard 
to SFI.

Several studies reported the effectiveness of amnion or amniotic 
membrane application for rat sciatic nerve defect models. An 
experiment using frozen human amnion processed into a tubular 
form showed better axonal regeneration than a silicone tube in a rat 
sciatic nerve 10-mm defect model [11]. However, the amnion tube 
has difficulty in maintaining its tubular formation due to its flexibility 
and lack of rigidity. To avoid collapsing, the amnion muscle combined 
graft (AMCG) conduit was invented [12]. The AMCG conduit was 
created by the insertion of skeletal muscle into the lumen of 
dehydrated amnion tube, and it showed a good peripheral nerve 
recovery in a rat 15-mm median nerve defect model. However, the 
recovery with respect to grasping test, myelinated axon diameter, 
and g-ratio did not reach that observed in the autograft. The AMCG 
conduit may also cause donor muscle morbidity. In addition, these 
studies have not been compared to commercially available artificial 
nerve conduit. For the sake of applying HAM to the nerve defect, we 
devised a new method of wrapping the HAM around an existing 

artificial nerve conduit from the outside. Then, HAM wrapping was 
verified whether it improved the ability of the conduit.

We consider that fresh HAM is the optimal condition for the 
application of HAM wrapping in the treatment of peripheral nerve 
defect because fresh HAM contains more stem cells with higher viability 
and richer amounts of angiogenic growth factors than preserved HAM 
[13]. An experiment evaluating the effect of cryopreserved HAM 
wrapping around autologous nerve transplantation in a rat 10-mm 
sciatic nerve defect model showed significantly less adhesion to the 
nerve and less scar formation than controls, but functional and 
morphological recovery was not improved [14]. Although the 
extracellular matrix (ECM) of HAM suppressed TGF-ß signaling [15] and 
reduced scar formation, which impeded peripheral nerve regeneration 
[7], the effect of ECM alone may have been insufficient for nerve 
regeneration in a refractory model such as the nerve defect model. 
Human amniotic mesenchymal stem cells (hAMSCs) are abundant in 
fresh HAM [5,16]. It was reported that hAMSCs administrated 
intracerebrally survived for at least 27 days and significantly increased 
the expression of brain-derived neurotrophic factor (BDNF) in a rat 
intracerebral hemorrhage model. As a result, neurogenesis was 
promoted [17]. BDNF acts through the neurotrophin receptor p75NTR to 
enhance myelin formation in vitro [18,19]. We hypothesize that BDNF 
secreted from hAMSCs within the HAM may have promoted peripheral 
nerve regeneration in this experiment.

There is a limitation in this study. First, this procedure requires 
implantation in the nerve defect immediately after fresh HAM delivery 
because there is no effective way to preserve it at the present time. 
Thus, the timing of peripheral nerve surgery needs to coincide with the 
timing of cesarean section. This combined method is difficult to use in 
emergency operations such as trauma cases. Further research on 
preservation methods to maximize cell viability and amount of growth 
factors in fresh HAM is necessary. Second, we could not demonstrate 
the significant functional recovery in SFI. The neuromuscular system 
may still be in the process of recovery at 12 weeks postoperatively. 
Longer observation periods could resolve this issue.

Figure 4. Histomorphometric results of the regenerated sciatic nerve at 12 weeks postoperatively. transmission electron microscope (TEM) photographs show-
ing cross-sectional slices of the regenerated sciatic nerve in the polyglycolic acid tube filled with collagen (PGA-c) (a), PGA-c/HAM (human amniotic membrane) 
(b), and Sham groups (c); scale bar = 5 µm. Myelinated axon perimeters (d). g-ratio (e). Each bar represents mean and standard error of five animals. *p < 0.05 (d 
and e). The distribution of longer myelinated axon perimeters (f ).
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This study demonstrated that a combination of fresh HAM 
wrapping and PGA-c promotes peripheral nerve regeneration better 
than PGA-c alone in several neurological assessments.
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