of immunoglobulins and complement are simply trapped in fibrin deposits (13), although such a possibility seems to be rather unlikely because of the selectivity of immunoglobulins and of the specific site of deposition, viz. vessel walls and dermo-epidermal junction, the sites most frequently involved in the deposition of immune complexes in the skin.

Although there is much yet to be studied before a definite process of the pathogenesis for PPC is established, our findings seem to indicate at least a new direction of research in this disorder.

REFERENCES

Autosensitization to DNA
F. Brauner, W. Brenner and F. Gschnait
Department of Dermatology I. University of Vienna, Vienna Austria
Received January 4, 1980

Key words: Gardner-Diamond syndrome; Autoerythrocyte sensitization syndrome; Painful bruising syndrome; Differential diagnosis

The spontaneous occurrence of widespread ecchymoses in a patient not exhibiting coagulopathy leads to a spectrum of differential diagnoses including amyloidosis, anaphylactoid purpura, pseudoxanthoma elasticum, Ehlers-Danlos syndrome, autoerythrocyte sensitization and autosensitization to DNA (11). This paper reports on a patient exhibiting the characteristic clinical findings and skin reactivity indicative of DNA autosensitization. The syndrome will be discussed briefly with particular reference to the differential diagnosis to autoerythrocyte sensitization.

CASE REPORT
A 48-year-old female patient presented with widespread, well circumscribed ecchymoses on the buttocks and extensor and flexor sites of her extremities. The lesions, which erupt spontaneously, are not preceded by trauma and appear initially as red, tender, macular to slightly raised patches, 1-2 cm in size, which sometimes disappear quickly or more often spread peripherally within a few hours, becoming surrounded by a well defined blue ring-shaped area about 1-2 cm in width. Some hours later numerous ecchymoses develop in these sites, which become confluent and finally resemble widespread hematomas (Fig. 1a, b).

The first attack leading to these skin changes occurred 5 months prior to admission and recurrent eruptions appeared at intervals of 2 to 3 weeks. There were no systemic symptoms such as fever, arthralgia or malaise.

The patient was strumectomized 18 years ago. Seven years ago vitiligo developed on the hands and knees. The patient is now in otherwise good health, she appears emotionally well balanced; the family history is unremarkable.

The general physical examination, ophthalmological examination, chest roentgenogram and thyroid scintigraphy showed no abnormalities. Platelet count, fibrinogen, prothrombin time and partial thromboplastin time were within normal ranges, as were ESR, urinalysis, complete blood count, serum analysis for glucose, blood urea nitrogen, creatinine, sodium, potassium, chloride, calcium, phosphate, uric acid, iron, cholesterol, triglycerides, alkaline phosphatase, SGOT, SGPT and LDH.

Acta Dermato-Venereologica 68
Serum electrophoresis and immunoelectrophoresis, quantitative determination of T and B cells and of serum IgG, IgM, IgA, C₃, C₄, and C₅ showed no abnormalities. VDRL, ANA, latex test, C-reactive protein and repeated LE cell preparations were negative. The patient exhibited IgG microsomal antithyroid antibodies; antiparietal cell antibodies were not detected.

Biopsies taken from the central red portions of the lesions revealed slight hyperkeratosis, spotty acanthosis of the epidermis and thickening of the basement membrane. There was marked perivascular edema in the upper dermis and a pronounced perivascular cell infiltrate in the upper and lower dermis composed mainly of mononuclear cells and also of eosinophils which were found interspersed between collagen bundles. There was slight extravasation of erythrocytes. Biopsies taken from the bluish borders of the lesions revealed a similar picture but the extravasation of red blood cells was far more pronounced. Direct immunofluorescence of lesional and perilesional skin using anti IgA, IgG, IgM and C₃ antisera proved negative.

SKIN TESTING METHODS

Skin testing was performed in the groin areas.

1. **Autologous lymphocytes** were obtained under sterile conditions from heparinized blood using a mixture of sodium metrizoate/12c (Lymphoprep®) according to Bøyum (1) and the modifications of Thorsby et al. (13). The lymphocytes were washed three times in saline and suspended at 10⁶ cells per ml. In order to lyse these cells a part of the suspension was subjected to five cycles of alternate freezing in carbon dioxide snow and thawing at 37°C. Both the lysed and the non-lysed lymphocyte suspension (0.1 ml respectively) were injected intracutaneously (i.c.).

2. **Autologous red blood cells** (RBC) (0.1 ml), obtained from heparinized blood, were washed five times in sterile saline, adjusted to a hematocrit of 80% and injected i.c. **Autologous RBC ghosts** were obtained by hemolyzing 10 ml of packed RBC with 100 ml of 0.98 M ammonium chloride (10 min), washed five times in sterile saline and suspended to a hematocrit of 80%. 0.1 ml of this suspension was injected i.c.

3. **Calf thymus DNA** (Boehringer-Mannheim) (0.1 ml) in suspension was passed through a 0.45 µm pore-size micropore filter and injected i.c.

4. **Controls.** Autologous lymphocytes, autologous RBC, RBC ghosts and calf thymus DNA were tested i.c. in the groin area of a normal, healthy, male volunteer. Sterile saline (0.1 ml) was used as a control in the patient.

SKIN TESTING RESULTS

Wheal and flare responses occurred in the patient's skin after injection of lymphocytes, lysed lymphocytes and calf thymus DNA. 15 min after injection there appeared an itchy pink infiltrate, about 1 cm in diameter which increased in size to 6 cm after about 6 hours. The control person (normal age-matched, healthy, male volunteer) did not show abnormal reactions. There were no abnormal responses after injection of autologous RBC, RBC ghosts and saline in either the patient or the control individual.
DISCUSSION

Levin & Pinkus (7) reported in 1961 on a 40-year-old woman who presented clinically with severe ecchymoses in the skin on the extremities, developing rapidly from an erythematous wheal. The reproducibility of the lesions after intracutaneous administration of calf-thymus DNA led to the term auto-sensitization to deoxyribonucleic acid (7).

Six years earlier, Gardner & Diamond (5) described a form of purpura producing painful bruising in four women, characterized by local pain, swelling and extension of bleeding into adjacent areas. Skin tests performed in these cases indicated an abnormal tissue response of sensibility to red blood cells. the responsible factor being present in the red blood cell stroma. Therefore, this peculiar syndrome has been named autoerythrocyte sensitization (5), which was re-evaluated by Ratnoff & Agele (10) in 1968: since most of their patients had had bizarre behaviour and since hypnosis could reproduce the lesions in some, the designation "psychogenic purpura" has been suggested. These authors, however, failed to reproduce the clinical lesions by intracutaneous injection of autologous whole blood in one-third of their patients and this is comparable to the studies of McDuffie & McGuire (4). The question therefore remains whether skin testing for autoerythrocyte sensitization is indeed erratic in nature (10) or whether some cases reported as autoerythrocyte sensitization with negative skin tests to red blood cells. In fact represented autosensitization to DNA. The present case represents clinically a typical example of autosensitization to DNA. This was confirmed by positive skin tests reactions to DNA and lymphocytes but not to RBC or RBC ghosts.

The skin changes of DNA autosensitization begin as warm, red, raised sometimes tender lesions (7, 8, 11) progressing to ecchymoses after several hours, which seem to be present predominantly at the periphery of the lesion, sometimes appearing as an ecchymotic ring. In contrast, in autoerythrocyte sensitization, as Gardner & Diamond described in their original paper (5), bleeding is the initial sign which in turn is followed by redness, swelling and tenderness (3, 6, 10).

Histologically, in both autoerythrocyte sensitization and DNA autosensitization the most striking feature of the lesions is the paucity of biological changes despite their gross appearance (10): there may be edema of the upper dermis, a mild perivascular mononuclear cell infiltrate and some extravasation of red blood cells. In early lesions of DNA autosensitization, however, an amorphous material may be found between collagen bundles, which stains blue with hematoxylin and gives a strong Feulgen reaction, thus resembling the hematoxylin bodies commonly associated with disseminated lupus erythematosus (7, 8, 11).

Recently, Pinnas et al. (9) described a patient with typical autosensitization to DNA in whom immunofluorescence studies of the spontaneous lesions (but not of the normal skin) revealed deposits of IgM, C3, factor B and properdin at the dermo-epidermal junction. In addition there was a decreased number of T cells and a large null cell population and a defective repair mechanism of UV-damaged DNA in lymphocytes. Since these features are common findings in systemic lupus erythematosus (SLE) the authors concluded that autosensitization to DNA may represent a variant of SLE. Our patient, who presents with the classical clinical features and skin test results of DNA autosensitization, had negative direct immunofluorescence and a normal distribution of lymphocyte subgroups, but exhibited antithyroid antibodies. which, in turn, may be of immunological importance in the development of the patient's vitiligo (2). Despite these immunological findings, obviously a larger number of patients needs to be investigated before there is firm evidence of an immunological basis for the skin lesions in autosensitization to DNA.

ACKNOWLEDGEMENT

We thank Mr Gamil Eltawil for excellent technical assistance and Professor Franz Greiter, Greiter AG, Weidling, Austria, for financial support.

REFERENCES

Antireticulin Antibodies in Psoriasis

Ana Siri, Winston Lozano and Raúl A. Vignale

Department of Dermatology, Hospital de Clínicas
"Dr. Manuel Quintela", Faculty of Medicine, University
of the Republic. Montevideo, Uruguay

Received July 18, 1979

Abstract: Antireticulin antibodies were studied in the sera of 32 patients affected by various clinical forms of psoriasis. The indirect immunofluorescence method was used on histological sections of human kidney and mouse liver and kidney. This method was also used with sera from children with coeliac disease and from healthy controls. In 10 of these sera were positive, while in 22 they were negative. The intensity of the antigens was studied on other methods (Fig. 1). The results showed a granular fluorescence corresponding to the transversely cut fibres, while in the kidney they were periglomerular and peritubular, in both human and animal tissues (Fig. 2). Of the 32 patients ARA was positive in 10 and negative in 22. As to the clinical forms, ARA had higher titres in patients with the 5 erythroderma. The number of cases with low titres because they had been treated with corticoids and cytostatics was lower than those of the other cases. The number of patients with generalized psoriasis, with large plaques in the scalp, chest,