Flow-cytometric Investigation of Epidermal Cell Characteristics in Monogenic Disorders of Keratinization and Their Modulation by Topical Calcipotriol Treatment

GEORGES P. H. LUCKER1, PETER M. STEIJLEN1, EMIEL J. A. SUYKERBUYK1, KNUD KRAGBALE2, FLEMMING BRANDRUP3 and PETER C. M. VAN DE KERKHOF2

Departments of Dermatology, 1University Hospital, Nijmegen, The Netherlands, 2University Hospital, Aarhus, and 3University Hospital, Odense, Denmark

A flow-cytometric study was performed in monogenic disorders of keratinization, to assess DNA distribution as well as the expression of keratins and involucrin. In addition, the changes in expression of these markers under influence of calcipotriol treatment were investigated.

Proliferation, measured by the percentage of epidermal cells in S/G2M-phase of the cell cycle, was increased in Darier’s disease, lamellar ichthyosis, congenital bullous ichthyotic erythroderma of Brocq and the Comet-Netherton syndrome, whereas normal proliferation was found in autosomal dominant ichthyosis vulgaris, X-linked recessive ichthyosis, keratosis pilaris, ichthyosis bullosa of Siemens and the Sjögren-Larsson syndrome. Keratin 6 was enhanced in erythrodermic lamellar ichthyosis, congenital bullous ichthyotic erythroderma of Brocq and the Comet-Netherton syndrome, showing also reduction of keratin 10. Involucrin was only slightly reduced in erythrodermic lamellar ichthyosis, congenital bullous ichthyotic erythroderma of Brocq and the Comet-Netherton syndrome, compared to the pronounced reduction in all other skin disorders studied.

Calcipotriol was found to enhance differentiation in Darier’s disease, erythrodermic lamellar ichthyosis, and congenital bullous ichthyotic erythroderma of Brocq. Only Darier’s disease did not show clinical improvement.

In conclusion, flow cytometry provides a useful method for quantification of epidermal cell characteristics in monogenic disorders of keratinization. Further studies need to be performed to establish its usefulness as a diagnostic and prognostic tool. Key words: Darier’s disease; ichthyosis; keratosis pilaris. (Accepted August 28, 1995.)

P. C. M. van de Kerkhof, Department of Dermatology, University Hospital Nijmegen, Postbus 9101, NL-6500 HB Nijmegen, The Netherlands.

One of the changes of normal, terminally differentiating keratinocytes is the specific expression of keratin intermediate filaments. Several methods for detection of these intermediate filament proteins are available. Two-dimensional polyacrylamide gel electrophoresis is most often used to characterize keratin proteins biochemically (1, 2). This method allows specific detection of the whole repertoire of keratins present in a tissue specimen, though the localization of the keratins is lost. Immunohistochemical methods using monoclonal antibodies recognizing single or sets of related keratins have the advantage that topographical information is maintained (3–5). A limitation of this approach is that only qualitative or semi-quantitative information can be obtained. Flow-cytometric analysis of intermediate filament proteins in single cell suspensions of epidermal cells allows rapid simultaneous quantification of two or more characteristics per individual cell, with high reproducibility and statistical accuracy (6). Immunohistochemical and flow-cytometric approaches have been used to determine the epidermal cell characteristics in normal and psoriatic skin and to evaluate the effects of therapies on proliferation and differentiation in psoriasis (7–9). Little information is available on epidermal cell kinetics in monogenic disorders of keratinization. Some immunohistochemical studies have been performed with the monoclonal antibody KB-1, recognizing a proliferation-associated nuclear antigen (7). However, no quantitative data are available on epidermal cell characteristics in monogenic disorders of keratinization, using a flow-cytometric approach. The vitamin D3 analogues calcipotriol and calcitriol (1α,25-dihydroxyvitamin D3) have been shown to inhibit cell proliferation (10–12) and induces terminal differentiation (10, 13–15) in cultured human keratinocytes. Immunohistochemical evaluation of treatment of psoriatic plaques with calcipotriol has revealed a rapid decrease of the number of proliferating cells, measured as Ki-67-positive nuclei, after 2 weeks, resulting in a total decrease of 48% after 12 weeks. Ks8.12-binding revealing keratin 16 expression has shown a tendency to diminish after 4–12 weeks of treatment (8). Flow-cytometric analysis has shown a decrease in DNA-content and a reduction of Ks8.12-binding in psoriasis, after 6 weeks of treatment with calcipotriol (9).

The aim of the present investigation was to assess, using a flow-cytometric approach, DNA distribution, as well as the expression of intermediate filament proteins and involucrin, markers for epidermal proliferation and differentiation, in order to characterize epidermal cell characteristics in Darier’s disease, keratosis pilaris (KP), autosomal dominant ichthyosis vulgaris (ADIV), X-linked recessive ichthyosis (XR1), and congenital ichthyoses. Furthermore, changes in expression of these keratins under influence of calcipotriol treatment were analyzed using flow cytometry.

MATERIALS AND METHODS

Subjects and skin sampling
Twenty-five patients (3 ADIV, 5 XRI, 5 Darier, 3 KP, 9 congenital ichthyosis) participated in the study. The group of congenital ichthyoses consisted of 1 erythrodermic lamellar ichthyosis (ELI), 2 non-erythrodermic lamellar ichthyosis (NELI), 1 ichthyosis bullosa of Siemens (Siemens), 2 congenital bullous ichthyotic erythroderma of Brocq (Brocq), 1 Comet-Netherton syndrome (CNS), and 2 patients with the Sjögren-Larsson syndrome (SLS). A superficial skin sample, about 0.2 mm thick and 3 mm in diameter, was removed from a representative area from each side with a razor blade in conjunction with a metal guard, from all patients before treatment. Similar samples were taken from 11 healthy volunteers. Eighteen patients (2 ADIV, 3 XRI, 5 Darier, 2 KP, 2 congenital ichthyosis) were treated by topical calcipotriol.
RESULTS

Epidermal cell characteristics in monogenic disorders of keratinization

Flow-cytometric measurements of cell suspensions obtained in the various monogenic disorders of keratinization are summarized in Table 1.

The SG2M values have been measured for each of the monoclonal antibodies, resulting in a total amount of five SG2M values in each sample. In the tables, the mean values are shown ± S.E.M.

As most disorders are extremely rare, the number of patients in the various groups was too low to perform statistical analysis. To allow a comparison between the flow-cytometric data before calcipotriol treatment found in the various skin disorders, alterations more than one standard deviation from the mean values in the normal control group were taken into consideration.

The percentage of cells in the SG2M phase of the cell cycle was elevated in Darier, ELL, NELI, Brocq, and CNS. Values comparative to normal were observed in ADIV, XRI, KP, Siemens, and the SLS.

Keratin 6 revealed an increase in ELL, Brocq, and CNS. A reduction of keratin 10 was observed in CNS. A reduction, less than one standard deviation from the normal controls, was noticed in Darier, ELL, NELI, Siemens, and SLS. Involutin was diminished in all monogenic disorders of keratinization studied. ELL, Brocq, and CNS exhibited only a reduction of involucrin expression of more than one standard deviation, whereas a reduction of more than three standard deviations was observed in the other dermatoses.

The percentage of cells containing keratins 4 and 13 was low in all subgroups.

Modulation of epidermal cell characteristics by calcipotriol treatment

To allow a comparison between the flow-cytometric changes by calcipotriol treatment, alterations of the nett calcipotriol effect of more than one standard deviation from the mean pretreatment values were taken into consideration.

Changes in epidermal cell characteristics in the monogenic disorders of keratinization, after treatment with calcipotriol, compared to its vehicle, are summarized in Table II. An increase in involucrin expression in favour of the calcipotriol-treated side was observed in Darier, ELL, and Brocq.

Alteration of keratin 10 expression paralleled the changes observed in involucrin expression. Again, a unilateral increase in favour of the calcipotriol treated side was observed exclusively in Darier, ELL, and Brocq.

Keratin 6 expression in ADIV, KP and Siemens was reduced by calcipotriol, while an elevation was noticed in Darier, ELL, and Brocq.

Modulation of keratins 4 and 13 was rather inconsistent: keratins 4 and 13 were both upregulated by calcipotriol in ADIV and Darier. In KP both were downregulated. Contradictory modification was observed in ELL, NELI, and Siemens. In Brocq only keratin 4 was modified upward, whereas in XRI only keratin 13 was regulated downward.

Only moderate modulation was observed in the percentage of cells in SG2M phase. An increase was observed in ADIV.
Table I. Mean values (± SEM) for percentage of cells positive for markers of proliferation and differentiation in normal skin and monogenic disorders of keratinization

<table>
<thead>
<tr>
<th></th>
<th>Normal n=11</th>
<th>ADIV n=3</th>
<th>XRI n=5</th>
<th>Darier n=5</th>
<th>KP n=3</th>
<th>ELI n=1</th>
<th>NELI n=2</th>
<th>Siemens n=1</th>
<th>Brocq n=2</th>
<th>CNS n=1</th>
<th>SLS n=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involucrin</td>
<td>45.2±2.7</td>
<td>18.1***±4.5</td>
<td>12.8***±1.6</td>
<td>18.3***±1.9</td>
<td>17.5***±2.8</td>
<td>35.0*±1.1</td>
<td>10.1***±2.1</td>
<td>29.4±1.5</td>
<td>29.7±0.1</td>
<td>9.5***±1.6</td>
<td></td>
</tr>
<tr>
<td>Keratin 4</td>
<td>0.9±0.2</td>
<td>2.7**±0.9</td>
<td>3.9***±1.3</td>
<td>5.5***±1.1</td>
<td>2.9**±0.8</td>
<td>1.5±0.0</td>
<td>1.7±0.5</td>
<td>4.0***±0.7</td>
<td>2.6**±0.4</td>
<td>2.1*±0.1</td>
<td>0.8±0.0</td>
</tr>
<tr>
<td>Keratin 13</td>
<td>3.8±0.5</td>
<td>2.2±0.6</td>
<td>3.8±1.2</td>
<td>5.7±1.4</td>
<td>3.2±0.8</td>
<td>1.6±0.0</td>
<td>1.3±0.2</td>
<td>3.0±0.5</td>
<td>2.0±0.3</td>
<td>1.7±0.3</td>
<td>0.6±0.0</td>
</tr>
<tr>
<td>Keratin 10</td>
<td>55.4±5.3</td>
<td>57.6±4.0</td>
<td>56.1±2.9</td>
<td>48.4±4.1</td>
<td>59.7±4.1</td>
<td>45.0±1.2</td>
<td>51.9±1.4</td>
<td>50.4±5.5</td>
<td>57.3±4.6</td>
<td>36.5±2.6</td>
<td>52.7±4.1</td>
</tr>
<tr>
<td>Keratin 6</td>
<td>18.8±2.9</td>
<td>9.9±4.8</td>
<td>5.3±1.0</td>
<td>16.0±1.7</td>
<td>7.7±0.9</td>
<td>54.2***±1.6</td>
<td>19.5±7.1</td>
<td>23.7±0.7</td>
<td>35.8***±4.9</td>
<td>47.1**±4.9</td>
<td>3.0±0.5</td>
</tr>
<tr>
<td>SG2M</td>
<td>5.8±0.8</td>
<td>6.5±0.3</td>
<td>7.3±0.4</td>
<td>10.7*±0.6</td>
<td>6.5±0.2</td>
<td>11.1*±0.4</td>
<td>8.5*±0.4</td>
<td>10.6*±0.4</td>
<td>9.1*±0.6</td>
<td>5.8±0.4</td>
<td></td>
</tr>
</tbody>
</table>

* >1 SD from normal, ** >2 SD from normal, *** >3 SD from normal.

Table II. Changes (± SEM) of epidermal cell characteristics in monogenic disorders of keratinization under influence of calcipotriol treatment

<table>
<thead>
<tr>
<th></th>
<th>ADIV n=2</th>
<th>XRI n=5</th>
<th>Darier n=3</th>
<th>KP n=3</th>
<th>ELI n=1</th>
<th>NELI n=2</th>
<th>Siemens n=1</th>
<th>Brocq n=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involucrin</td>
<td>7.1±4.9</td>
<td>-0.2±0.8</td>
<td>12.6±4.4</td>
<td>12.0±6.7</td>
<td>9.6</td>
<td>0.2±0.0</td>
<td>6.8</td>
<td>25.6</td>
</tr>
<tr>
<td>vehicle</td>
<td>7.9±5.7</td>
<td>2.1±1.0</td>
<td>-0.9±3.2</td>
<td>10.0±5.8</td>
<td>-13.5</td>
<td>0.6±0.7</td>
<td>15.4</td>
<td>7.9</td>
</tr>
<tr>
<td>difference</td>
<td>-0.8±0.8***</td>
<td>-2.3±1.0</td>
<td>13.5±7.5***</td>
<td>2.0±10.3</td>
<td>23.1***</td>
<td>-0.4±0.7</td>
<td>-8.6***</td>
<td>17.7***</td>
</tr>
<tr>
<td>Keratin 4</td>
<td>1.6±0.4</td>
<td>-2.3±1.7</td>
<td>7.2±1.7</td>
<td>-0.1±1.0</td>
<td>0.9</td>
<td>0.2±0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>vehicle</td>
<td>-1.4±1.8</td>
<td>-1.3±1.7</td>
<td>-0.4±1.4</td>
<td>1.5±3.3</td>
<td>0.7</td>
<td>-1.2±0.6</td>
<td>2.6</td>
<td>-0.2</td>
</tr>
<tr>
<td>difference</td>
<td>3.0±2.2**</td>
<td>-1.0±2.9</td>
<td>7.6±2.4***</td>
<td>-1.8±3.2*</td>
<td>0.2***</td>
<td>1.0±0.4*</td>
<td>-2.1***</td>
<td>0.7*</td>
</tr>
<tr>
<td>Keratin 13</td>
<td>1.2±0.1</td>
<td>-3.0±1.7</td>
<td>5.5±3.0</td>
<td>0.2±0.5</td>
<td>1.2</td>
<td>-0.5±0.1</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>vehicle</td>
<td>0.2±0.6</td>
<td>0.3±0.1</td>
<td>0.3±0.9</td>
<td>1.8±1.0</td>
<td>2.2</td>
<td>0.0±0.0</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>difference</td>
<td>1.0±0.5*</td>
<td>-3.3±1.7*</td>
<td>5.2±3.4*</td>
<td>-1.6±1.4*</td>
<td>-1.0***</td>
<td>-0.5±1.4*</td>
<td>0.5*</td>
<td>0.3</td>
</tr>
<tr>
<td>Keratin 10</td>
<td>-2.1±2.4</td>
<td>-4.6±2.0</td>
<td>3.1±3.8</td>
<td>2.1±2.2</td>
<td>-3.4</td>
<td>-1.1±1.1</td>
<td>-2.2</td>
<td>20.4</td>
</tr>
<tr>
<td>vehicle</td>
<td>0.6±2.4</td>
<td>-4.8±3.2</td>
<td>-7.5±4.5</td>
<td>2.7±5.2</td>
<td>5.7</td>
<td>1.2±0.1</td>
<td>5.4</td>
<td>7.0</td>
</tr>
<tr>
<td>difference</td>
<td>-2.7±2.5</td>
<td>0.2±2.4</td>
<td>10.6±13.5*</td>
<td>-0.6±3.3</td>
<td>2.3*</td>
<td>-23.1±1.1*</td>
<td>-7.6*</td>
<td>13.4**</td>
</tr>
<tr>
<td>Keratin 6</td>
<td>-6.0±4.5</td>
<td>0.5±18</td>
<td>10.6±14.3</td>
<td>4.8±4.0</td>
<td>18.1</td>
<td>-7.2±5.1</td>
<td>0.0</td>
<td>28.9</td>
</tr>
<tr>
<td>vehicle</td>
<td>7.7±5.4</td>
<td>-1.0±28</td>
<td>5.3±10.5</td>
<td>7.6±2.2</td>
<td>9.2</td>
<td>-12.0±4.1</td>
<td>11.8</td>
<td>6.9</td>
</tr>
<tr>
<td>difference</td>
<td>-13.7±10.0*</td>
<td>1.5±3.5</td>
<td>5.3±4.3*</td>
<td>-2.8±6.1*</td>
<td>8.9***</td>
<td>4.8±1.0</td>
<td>-11.8***</td>
<td>22.0***</td>
</tr>
<tr>
<td>SG2M</td>
<td>0.6±0.2</td>
<td>0.2±0.4</td>
<td>-2.0±0.9</td>
<td>0.3±0.2</td>
<td>4.5±1.1</td>
<td>1.5±0.4</td>
<td>-4.3±1.3</td>
<td>0.5±2.4</td>
</tr>
<tr>
<td>vehicle</td>
<td>-0.1±0.4</td>
<td>0.9±0.5</td>
<td>-1.5±0.2</td>
<td>0.7±0.2</td>
<td>3.5±1.9</td>
<td>-0.6±0.3</td>
<td>2.3±2.0</td>
<td>1.5±1.0</td>
</tr>
<tr>
<td>difference</td>
<td>0.7±0.9*</td>
<td>-0.7±0.8</td>
<td>-0.5±1.0</td>
<td>-0.4±0.2*</td>
<td>1.0±1.9**</td>
<td>2.1±0.4***</td>
<td>-6.6±2.1***</td>
<td>-1.0±1.5*</td>
</tr>
</tbody>
</table>

The values indicated in the Table represent the changes in mean values of percentage of cells positive for the monoclonal antibodies from baseline to end of treatment. The changes are indicated for the calcipotriol- and verum-treated side. The net calcipotriol effect is indicated by the difference.

* >1 SD from normal, ** >2 SD from normal, *** >3 SD from normal.
ELI and NELI, whereas a decrease was found in KP, Siemens and Brocq.

DISCUSSION

In the present study, information on epidermal cell kinetics of monogenic disorders of keratinization was obtained, using a flow-cytometric approach. Furthermore, the influence of calcipotriol on proliferation and differentiation was analyzed using flow cytometry. Proliferation, measured by the percentage of cells in SG2M phase of the cell cycle, revealed a hyperproliferative state of the epidermis in Darier, ELI, NELI, Brocq and CNS, whereas proliferation was comparable to normal in ADIV, XRI, KP, Siemens and SLS. In 1966, Frost et al. (21) established hyperproliferation to be a contributing factor in the pathogenesis of lamellar ichthyosis, epidermolytic hyperkeratosis and Darier's disease, but not in ADIV and XRI, using autoradiographic techniques with tritiated thymidine which is incorporated into cells in the period of DNA synthesis (22). Jagell & Liden demonstrated DNA synthesis of epidermal cells in SLS to be 2.7 times greater than normal, using the same technique (23). Our flow-cytometric data are in accordance with these previous observations, except for Siemens and SLS. This discrepancy may be explained by the fact that both Siemens and SLS are clinically characterized by prominent lichenification, implicating that relatively more superficial than basal epidermal cell layers may be obtained, using a 0.2 mm thick razor blade. Another marker for proliferation, AF124 staining keratin 6, was elevated in ELI, Brocq and CNS. Information on differentiation was obtained by the percentage of cells, positive for keratin 10, which is a marker for early differentiating keratinocytes. Keratin 10 was reduced more than one standard deviation compared to the normal controls only in CNS. However, all skin disorders characterized by hyperproliferation (as demonstrated with the SG2M values described previously) showed a reduced staining pattern for keratin 10, with the exception of Brocq, which is another ichthyosis subtype, clinically characterized by prominent lichenification. These data are in accordance with clonal analysis, growth kinetics, and cell cycle studies of normal human keratinocytes cultured in serum-free medium, which show that if keratinocyte proliferation is promoted, differentiation is inhibited (24).

Involutin is one of the substrates for the formation of cornified envelopes and is synthesized in normal epidermis in the granular cell layer, implying that this protein is a marker of late-stage differentiation. However, in hyperproliferative skin disorders such as benign neoplasms, malignant tumors, psoriasis, and DLE, involucrin is synthesized much earlier (25, 26). Our study demonstrated diminished involucrin expression in all skin disorders studied. However, ELI, Brocq and CNS, all characterized by elevated keratin 6 expression and hyperproliferation, exhibited a more pronounced staining of anti-involutin, compared to the other dermatoses studied.

Concerning the influence of calcipotriol on epidermal cell kinetics, we observed induction of differentiation, indicated by keratin 10 expression, as well as induction of terminal differentiation, indicated by involucrin expression, in Darier, ELI and Brocq, which is in accordance with previous studies on calcipotriol in psoriasis (27). Nevertheless, the expected reduction in proliferation, as was observed previously in psoriasis, was lacking in our study.

Keratins 4 and 13, which are expressed following treatment with retinoids (28), are normally found in fetal, but not in adult epidermis. Modulation after treatment with calcipotriol revealed no consistent findings.

Comparing the flow-cytometric data with the clinical data revealed a good correlation in KP and Siemens, which were unresponsive to calcipotriol, and in ELI and Brocq, which improved substantially. This is in contrast to NELI, XRI and ADIV, in which some clinical improvement was observed, whereas the flow cytometry remained unchanged. Finally, it is of interest that Darier was characterized by flow-cytometric changes, although clinical improvement was not observed. It is attractive to speculate that Darier's disease might be responsive to calcipotriol when used at a lower and less irritating concentration.

We conclude that flow cytometry provides a useful method for establishing epidermal cell kinetics of monogenic disorders of keratinization. Further studies are required to find out to what extent quantification of cell cycle kinetics and markers of keratinization is useful as a diagnostic and prognostic tool.

ACKNOWLEDGEMENTS

We wish to thank M. J. J. van Vlijmen-Wiilens and C. A. E. M. van Hooijdonk for their assistance, and Leo Pharmaceutical Products B.V. for providing the ointments and for financial support.

REFERENCES

