Interleukin-8 (IL-8) is a member of the chemokine family, which comprises a number of mediator peptides with shared biochemical and functional characteristics (1 for ref.). Two sub-families could be established based on two cysteine residues located amino-terminally. In the chemokine α or C-X-C family, the two cysteines are separated by another amino acid, whereas in the chemokine β or C-C family, the cysteines are adjacent to each other.

IL-8, as a representative of the C-X-C family, was shown to exert both chemotactic and mitogenic activity on a number of different cell types, including neutrophilic granulocytes (2), T-cells, (3), keratinocytes (4) and melanoma cells (5). It is produced by endothelial cells, monocytes, lymphocytes and fibroblasts (6 for ref.). Apart from these, keratinocytes (6) and melanoma cells (5) were shown to produce IL-8 in vitro as well.

Using monoclonal antibodies, raised specifically against IL-8 (7), distinct intraepidermal IL-8 immunoreactivity could be detected in normal skin, as well as inflammatory skin diseases such as psoriasis and eczema by immunohistochemical methods (8, 9).

Considering the differential staining pattern of basal and squamous cell layer in normal epidermis by these antibodies (8, 9), and the growth-activating properties of IL-8 for keratinocytes in vitro, the IL-8 immunoreactivity in keratinocyte-derived tumours (squamous cell carcinoma, basal cell carcinoma and Bowen's disease) was investigated. In comparison, malignant melanoma, a non-epithelial tumour, was tested for IL-8 immunoreactivity in vivo, as cells derived from this tumour are able to produce IL-8 in vitro (5).
DISCUSSION

In previous studies from our laboratory using IL-8-specific monoclonal antibodies, distinct immunoreactivity was demonstrated within normal epidermis exclusively confined to differentiating keratinocytes (8). The monoclonal antibodies 46E5 and 52E8 are known to detect two different epitopes of the IL-8 molecule (7). It may be postulated that in normal keratinocytes preformed IL-8 will be processed during keratinocyte differentiation, resulting in a different accessibility of the two relevant epitopes. Under inflammatory conditions like psoriasis vulgaris (8) and different forms of eczema (9), immunoreactivity was reduced or even completely absent and inversely related to the degree of inflammation (9).

As demonstrated in this study, in malignant, transformed keratinocytes intracytoplasmic IL-8 immunoreactivity was absent with both antibodies used, whereas normal-appearing keratinocytes adjacent to tumour cells retained their IL-8 immunoreactivity and were similar to epidermal keratinocytes.
in normal human skin. In contrast to the clear-cut differences between normal and malignant epithelial tissue, in Bowen's disease atypical cells scattered within the stratum Malpighii were identified as cells without IL-8 immunoreactivity.

There are several possible causes for the absence of IL-8-related immunoreactivity in neoplastic excrescences of the skin.

Firstly, decrease or loss of IL-8 immunoreactivity in malignant cells could indicate reduced IL-8 synthesis. In fact, reduction in protein synthesis has been demonstrated in cells of semimalignant basal cell carcinoma (11, 12). On the other hand, transformed human epithelial cell lines like KB, HaCat and A431 were shown in vitro to secrete significant amounts of the chemokine (own unpublished results).

Secondly, in transformed keratinocytes IL-8 could be immediately released after synthesis so that the peptide is no longer detectable by immunohistochemical methods. Alternatively, malignant cells may produce an IL-8-isoform which is not detected by the antibodies used. In fact, recent studies (6 for ref) have shown that various types of cells can produce differently processed forms of IL-8. Aminoterminally truncated forms like the 69 amino acid, 77 amino acid and 72 amino acid IL-8 are secreted by endothelial cells, fibroblasts and monocytes, respectively. However, all these truncated forms were shown to be detected by monoclonal antibodies used in this study (13).

Interestingly, similar to the above-mentioned results, in malignant cells of primary melanoma and melanoma metastasis IL-8 immunoreactivity was found to be absent. On the other hand, recent in vitro studies have demonstrated that melanoma cells are able to produce and to release IL-8 in vitro (5, 14). Thus, similar to neoplastic keratinocytes, intracytoplasmic IL-8 immunoreactivity is lacking in malignant melanomas, although in vitro these cells are capable of synthesis and secretion of IL-8.

Thus, irrespective of explanations given, a loss of IL-8 immunoreactivity is very probably a sign of malignant transformation. Not only has IL-8 immunoreactivity been shown to be a sensitive marker of inflammation affecting keratinocytes, but it is also absent in keratinocyte neoplasia irrespective of investigated tumour type. Both observations
point toward a central role of IL-8 in growth regulation as well as terminal differentiation of keratinocytes. Studies are under way that will more clearly define the biochemical nature of IL-8 immunoreactivity.

ACKNOWLEDGEMENTS

This study was supported by Deutsche Forschungsgemeinschaft grant Sf 95/2-3. This investigation was in part presented at the 24th annual meeting of the European Society for Dermatological Research (ESDR), Vienna 1994.

REFERENCES


