Schnitzler’s Syndrome (Urticaria and Macroglobulinemia) Associated with Pseudoxanthoma Elasticum

LAURENT MACHE1, LOÎC VAILLANT1, MARIE C. MACHE1, ERIC ESTEVE1, ANNE DE MURET1, RANDA KHALLOUP1, 2, BRIGITTE ARBEILLE1, CHRISTINE MULLER1 and GÉRARD LORETTI1

Departments of 1Dermatology, 2Pathology and 4Electronic Microscopy, University Hospital Trousseau, 37044 Tours Cedex, France

Schnitzler’s syndrome, first described in 1974, is defined by chronic non-pruritic urticaria, osteocondensation, and a monoclonal IgM dysproteinemia, but without criteria of lymphoproliferative disease. We report a patient with chronic urticaria and macroglobulinemia. In addition, he had double monoclonal dysproteinemia IgM x (51.3 g/l) and IgA λ, osteocondensation, and some cutaneous lesions of pseudoxanthoma elasticum. Only 20 cases of Schnitzler’s syndrome have been reported hitherto. This is the first case associated with pseudoxanthoma elasticum, which was localized and discovered at the same time as Schnitzler’s syndrome. We discuss the possible role of monoclonal immunoglobulin in the occurrence of localized elastorrhexis. Key words: Monoclonal dysproteinemia; Immunoglobulin M; Interleukin 1 α.

(Accepted April 22, 1991.)

L. Machet, Department of Dermatology, CHU TROUSSEAU, F-37044 Tours Cedex, France.

Monoclonal dysproteinemia is associated with various cutaneous manifestations (1) among which the association of chronic urticaria with monoclonal IgM was described by Schnitzler et al. in 1974 (2,3). Twenty other cases have been described subsequently (1, 4–12). We report a new case of Schnitzler’s syndrome which is particularly interesting because of the coexistence of pseudoxanthoma elasticum (PXE).

CASE REPORT

A 69-year-old man presented with a 5-year history of chronic urticaria and dysproteinemia. Clinical examination revealed annular erythematous and maculopapular lesions over the trunk. The eruption was non-pruritic and almost permanent, but each lesion subsided in less than a day. Histopathological examination of an urticarial lesion showed edema of superficial dermis with moderate mononuclear and polymorphonuclear cell infiltration around superficial vessels. Direct immunofluorescence microscopy did not reveal any deposits of anti-IgM, anti-IgA, or anti-C3.

Two macular and yellowish lesions on the left arm were noted. One followed a trauma, while the other had occurred spontaneously. Histopathological examination of a xanthomatosus lesion with orcein staining showed abnormal and fragmented elastic fibres typical of pseudoxanthoma elasticum (Fig. 1). Electronmicroscopy revealed fragmented and dissociated elastic fibres, containing calcium deposits (Fig. 2). There were no angioid streaks on fundoscopic examination and echocardiography was normal. There was no familial history of pseudoxanthoma elasticum.

There were atrophic and symmetrical lesions on the shoulders, probably following vaccination. Histopathological examination of these showed them to be consistent with a scar. General health status was good. There was no lymph node enlargement, no hepatomegaly and no splenomegaly. There was some episodic and locomotor bone pain, localized in the left ankle.

Blood cell count was normal. The ESR was 74 mm at the first hour, fibrin concentration 3.05 g/l, and C-reactive protein 8.3 mg/l (< 8 mg/l). The cholesterol level was normal and triglyceride level 2.32 mmol/l (< 1.55 mmol/l), gammaglutamyltransferase and ALAT were normal, alkaline phosphatase was slightly increased 125 Ui/l (< 110 Ui/l), creatinine, calcium and phosphate values were normal. Analysis of three stool specimens revealed no parasites or ova.

Serum electrophoresis showed proteinemia at 80 g/l, and gammaglobulin at 25.6 g/l, with a monoclonal aspect. Serum immunoelectrophoresis showed a double dysproteinemia IgM x and IgA λ. IgM concentration was 31.3 g/l. IgG and IgA values were normal. A monoclonal kappa chain was present in urinary (0.2 g/l). There was no albuminuria or tubular dysfunction. Plasma viscosity was at 1.8 g/l (normal, 1.46 ± 0.18). Complete skeletal X-ray was normal except for a condensation, with some patchy hypodensities of the neck of femur (Fig. 3). Bone scintigraphy with technetium 99m showed an intense fixation on the same area. Medullogram and osteoscannular biopsy were normal. Bone biopsy showed osteostatic and osteoclastic hyperactivity, without any tumoral proliferation. Thoracic and abdominal tomodensitometry showed pulmonary tuberculotic sequelae. Congo red and thioflavin T staining showed no amyloid deposits on skin and rectal biopsies. Antinuclear antibodies, anticytoplasmic neutrophil antibodies and cryoglobulins were absent. The C3 and C4 fractions of complement and CH 50 were normal. Positive serum anti-HI, alpha activity was found by immunostaining. The patient was treated for one month with ibuprofen 800 mg daily, and then with ecolchicine (1 mg/day) and then with dapsone for the same period of time, without any improvement.

Fig. 1. Fragmented elastic fibres in the mid-dermis (orcein stain, ×400).

This work was presented as a communication at the French Society of Dermatology, Paris, November 8, 1990.

Acta Derm Venereol (Stockh) 72
DISCUSSION

Our patient had pseudolymphoma elasticum associated with Schnitzler's syndrome. Our patient showed all the signs usually encountered in this syndrome: chronic urticaria, macroglobulinemia, and osteocondensation without any evidence of lymphoproliferative disease (Table I). This syndrome, described by Schnitzler et al. (2), belongs to the large group of dysproteinemias but differs from other cutaneous monoclonal gamma pathological manifestations (1). Apart from the clinical manifestations, the particular characteristic of this syndrome is its benign prognosis (1) and the presence in the serum of an anti-ILα antibody that could be of pathophysiological significance (4,13).

Cutaneous biopsy shows superficial dermal edema with polymorphous infiltrate and mild vasculitis in all cases. Leukocytoclasia or fibrinoid necrosis is present in half of the cases (1). Direct immunofluorescence microscopic study usually gives negative results (1,4) but, when positive, shows deposits of anti-IgM along the basement membrane zone or in the capillary walls (11). Monoclonal IgM is always present and the light chain is usually of the kappa isotype (4). In our case, two monoclonal peaks, IgM κ and IgA λ, were present. Another patient (12) also had a double monoclonal immunoglobulin, IgM κ and μ, with a hypodiploid population of mononuclear cells in the bone marrow. Bone pain is present in 58% of cases, and osteocondensation in 43% (1,4). In our case, the osteocondensation was associated with some patchy hypodensities. The other radiological manifestations usually described are condensation and hyperostosis of the iliac crest (2,9) and vertebral condensations (5). Bone biopsy has been carried out in only 3 other cases, in one case showing evidence of lymphoid proliferation (1). The other signs frequently encountered are fever and lymphadenopathy.

One particular characteristic of this syndrome is its benign and prolonged course despite the dysproteinemias, since the first described patient has a 20-year follow-up (2,3). Evolution toward lymphoma or Waldenström disease has been reported in one case (5). Our patient has a 6-year course, without any sign of Waldenström disease or myeloma. Nevertheless, the high titre of monoclonal IgM and the double monoclonal gammapathy require careful surveillance.

The pathophysiology of this syndrome has recently been linked to an anti-ILα activity in the serum of the patients.

Table I. Main clinical, biological and pathological features of the 21 cases of Schnitzler's syndrome

<table>
<thead>
<tr>
<th>Feature</th>
<th>Number of cases tested</th>
<th>Number of positive cases tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of urticaria > 5 years</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Superficial urticaria</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Angiokeratoma</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Osteocondensation</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Fever and/or weight loss</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>Increased ESR</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Elevated fibrinogen > 6 g/l</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Monoclonal IgM</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>IgM κ</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>IgM > 10 g/l</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Urine Bence Jones protein</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Lymphoid proliferation in:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Medullogram</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>2. Bone marrow biopsy</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3. Bone biopsy</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Acta Derm Venereol (Sofia) 72
This activity was present in our case and in seven others (13), which could explain the fever and urticaria. Indeed, IL-α is known to have inflammatory properties in human skin, causing persistent erythema with mixed dermal leukocyte infiltrate by intradermal injection (14). Additionally, IL-α has been demonstrated to have a potent bone resorption-stimulating factor activity (15). Another explanation for the development of urticaria could be the deposition of immunoglobulins and complement in the walls of small capillaries (11), though, as in our case, direct immunofluorescence microscopy usually proves negative (1,4).

Treatment is difficult: anti-H1 is ineffective, but anti-H2, ibuprofen, colchicine, dapsone and oral corticosteroids have been reported to be effective in some cases (1,4,10,11). In our case, ibuprofen, dapsone and colchicine proved ineffective.

The association of Schnitzler’s syndrome and pseudoxanthoma elasticum has not been reported previously. Our patient had only two acquired lesions, one occurred on a scar, which is usual in PXE, and the other occurred spontaneously and consisted of a yellowish annular and papular lesion 1 cm in diameter. Its histopathological appearance and the electron microscopy study were typical of PXE, showing fragmented and calcified elastic fibres.

The pathogenesis of PXE is now explained either by a primary abnormality of the molecular sequence of elastic fibres. The role of monoclonal IgM in the development of pseudoxanthoma elasticum is not clear. Monoclonal immunoglobulins are known to possess varying degrees of antibody activity (16), and elastic tissue disorders, such as generalized acquired cutis laxa, have been reported in association with multiple myeloma (17). Moreover, the aural localized form of cutis laxa has also been reported recently in 2 cases of myeloma (18). The deposit of monoclonal immunoglobulin, which has an antielastic effect on the elastic fibres, has been proposed as an explanation for the coexistence of these two rare conditions (17). Another explanation for the development of elastolysis could be the release of proteolytic enzymes by the inflammatory infiltrate (18). Indeed, inflammatory urticarial lesions usually precede or accompany the development of cutaneous laxity in acquired cutis laxa. In these cases, histopathological examination reveals dermal edema with infiltration by mononuclear and polymorphonuclear leukocytes.

If a link exists between PXE and macroglobulinemia it may be via one of these two mechanisms. In our case, though we did not find IgM deposits on elastic fibres, we speculate that our patient had monoclonal IgM and urticaria, which led to a secondary development of localized PXE, because of the chronic inflammatory infiltrate.

ACKNOWLEDGEMENT

We wish to thank Dr. L. Didierjean (Dermatology Department, Pr. Saurat, Hôpital cantonal de Genève, Switzerland) for anti-IL-α activity measurement.

REFERENCES