Anthralin is a Potent Inhibitor of Pityrosporum Orbicularis/Ovale
In vitro

THOMAS BUNSE and GUSTAV MAHRLE
Department of Dermatology, University of Cologne, Cologne, Germany

Two strains of Pityrosporum orbicularis/ovale were grown in a liquid medium and exposed to different concentrations of the imidazoles ketoconazole and clotrimazole as well as anthralin, liquor carbonis detergens and salicylic acid. With regard to growth inhibition of yeast cells, the efficacies of anthralin and the imidazoles were similar, a half-maximal inhibition being achieved with an anthralin concentration of 7 mg/l. Liquor carbonis detergens and salicylic acid also inhibited growth of Pityrosporum orbicularis/ovale, but only at much higher concentrations. The response to salicylic acid was mainly due to its acid pH. Key words: Imidazoles; Salicylic acid; Growth inhibition.

(Accepted June 15, 1991.)


T. Bunse, Universitäts-Hautklinik Köln, Joseph-Stelzmann-Str. 9, D-5000 Köln 41, Germany

Yeasts of the genus Pityrosporum colonize healthy human skin as saprophytes, but are also the causative agents of pityriasis versicolor (1), Pityrosporum folliculitis (2) and Malassezia intertrigo (3). A pathogenetic role of Pityrosporum orbicularis/ovale in seborrheic dermatitis was elucidated especially by Faergemann and co-workers (4-6) and has also been proposed for psoriasis (7, 8), atopic eczema (4) and papulomatosus confluens et reticularis (9). One argument for this hypothesis was the response of the above-mentioned diseases to antifungotics (7, 10, 11). To our knowledge only little attention has been paid to the effect of classical antipruritic or antiseborrhic agents on Pityrosporum. Therefore, the aim of the present study was to investigate the influence of several primarily non-antimycotic drugs, which are frequently used for external therapy of those skin diseases, on the growth of Pityrosporum in vitro and compare it with that of true antifungotics.

MATERIAL AND METHODS

Two strains of Pityrosporum orbicularis/ovale, CBS 6001 and CBS 1878, which originated from the Centraalbureau voor Schimmelcultures, Delft, Netherlands, were used for the study. The growth medium consisted of Sabouraud 2% glucose broth (Merck, Darmstadt, F.R.G.) containing 7.5% Tween 80 (Serva Feinbiochemica, Heidelberg, F.R.G.), 0.25% glycerol monoesterate (Sigma Chemical Company, St Louis, USA) and 0.1% yeast extract (Merck). pH 5.7. Ketoconazole, clotrimazole, anthralin, liquor carbonis detergens and salicylic acid were added to the growth medium at various concentrations. The latter two substances were dissolved directly in the medium. The imidazoles and anthralin were added to the medium after dissolution in acetone. The final concentration of acetone in the medium did not exceed 0.5%. In these experiments, acetone was also added to the controls.

Since salicylic acid caused a drop in the pH-value of the medium to 3.4 at a concentration of 10 g/l, these experiments were repeated after adjustment of the pH-value to 5.7 by the addition of HEPES buffer (Sigma Chemical Company). The other agents did not influence the pH of the medium in the concentrations tested.

Two ml aliquots containing increasing concentrations of the tested agents were inoculated with 100,000 cells of the strains CBS 6001 or CBS 1878, respectively, at 32°C in the dark under constant shaking for 18 h. After the incubation period the cells were counted in a Neubauer chamber. All experiments were performed in triplicate at least. The two tested strains did not show any differences in their response. The concentrations giving half-maximal growth inhibition of Pityrosporum were evaluated from dose-response curves.

RESULTS

Exclusively blastospores and no mycelial elements grew in the cultures. In contrast to most of the recommended media, which contain olive oil, the medium used was free from oil and lipid droplets, which facilitated the counting of the cells.

All tested agents inhibited the growth of Pityrosporum species. The imidazoles ketoconazole and clotrimazole showed half-maximal growth inhibition at concentrations of 0.8 and 45 mg/l, respectively (Table 1). Among the other agents, anthralin turned out to be the most effective, with half-maximal growth inhibition at 7 mg/l and nearly complete inhibition at 20 mg/l. However, no fungicidal effect on Pityrosporum was exerted by anthralin up to the highest tested concentration of 100 mg/l. For salicylic acid and liquor carbonis detergens, much higher concentrations were required to achieve half-maximal growth inhibition, viz 400 and 1,850 mg/l, respectively.

The addition of salicylic acid reduced the pH of the medium at the lowest concentration (200 mg/l) from 5.7 to 5.2 and at the highest concentration (10 g/dl) to 3.4. In a second assay this pH was kept constant at 5.7 by adding HEPES buffer. In this case the inhibitory effect of salicylic acid on the growth of Pityrosporum was much weaker, achieving a half-maximal inhibition at approximately 10 g/l.

<table>
<thead>
<tr>
<th>Table 1. Concentrations causing half-maximal growth inhibition of Pityrosporum orbicularis/ovale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ketoconazole</td>
</tr>
<tr>
<td>Anthralin</td>
</tr>
<tr>
<td>Clotrimazole</td>
</tr>
<tr>
<td>Liquor carbonis detergens</td>
</tr>
<tr>
<td>Salicylic acid (unbuffered)</td>
</tr>
<tr>
<td>Salicylic acid (buffered at pH 5.7) approx.</td>
</tr>
</tbody>
</table>
DISCUSSION

In the present study we compared the effects of some classical antipsoriatic and antiseborrheic agents with those of well-known antifungics on Pitryosporum orbicularis/ovalae. We used the imidazole antifungics ketoconazole and clotrimazole, which showed half-maximal growth inhibition of Pitryosporum at 0.8 and 45 mg/l, respectively. Our results concerning ketoconazole are in keeping with those of Faergemann & Borges (12), who used a growth medium completely different from ours. Compared with data from the literature, the efficacy of clotrimazole was lower in our experiments, possibly due to a considerable variation in sensitivity of different Pitryosporum strains to this particular antifungic (13).

Anthrallin exhibited a half-maximal inhibition at a concentration of 7 mg/l, which means that the efficacy of anthralin is comparable to that of the imidazoles tested. For comparison, the lowest anthralin concentration in ointments for topical treatment of psoriasis or seborrhoeic dermatitis is usually 500 mg/kg, which is 70-fold higher than the anthralin concentration causing half-maximal growth inhibition of Pitryosporum in vitro. Therefore we conclude that therapeutic concentrations of anthralin will strongly inhibit Pitryosporum, which is presumed to play a role in seborrhoeic dermatitis (4–6) and Koeberitzation of psoriasis (7, 8, 14).

The two other antipsoriatic agents tested in this study, liquor carobins detergents and salicylic acid, also inhibited the growth of Pitryosporum, though they were much less effective than anthralin. Half-maximal inhibition was achieved at a concentration of 1.85 g/l for liquor carobins detergents and at 0.4 g/l for salicylic acid. Nevertheless, the usual therapeutic concentrations of these agents, i.e. approximately 5–20% for liquor carobin detergents and 3–5% for salicylic acid, may also be able to inhibit the growth of Pitryosporum in vivo. In the case of salicylic acid, its inhibitory effect due to the lowering of the pH might be neutralized by the buffer capacity of the skin.

REFERENCES