Cholinergic and Adrenergic Sweating in Atopic Dermatitis

RAIJA KIISTALA

Departments of Dermatology, Helsinki University Central Hospital and Central Military Hospital, Helsinki, Finland

Sweating responses to methacholine and adrenaline were compared with an evaporimeter in normal-looking back and forearm skin from patients with atopic dermatitis (AD) and from non-atopic controls (NA). With both stimulants, the sweat rates were higher in forearm than in back skin in both groups, and between the two sites the rates showed positive correlations which were statistically significant in both groups. With methacholine the responses were slightly depressed in both areas in AD. With a low suprathereshold adrenaline concentration (5 x 10^{-8} mol/l) the responses were equal in both groups but a tenfold higher adrenaline concentration elicited an increase of 55% in sweating rates in the back skin of NA and a 15% depression in the back skin of AD subjects (p < 0.05). On arm skin there was a similar trend, but less marked. Between the cholinergic and adrenergic sweating responses a positive correlation was found on arm skin in AD, suggesting that the unknown mechanism of sweat depression in AD might be the same for both drugs. Key word: Sweat stimulation.

(Accepted August 12, 1991.)


R. Kiistala, Department of Dermatology, Helsinki University Central Hospital, Seinäjoki, SF-00170 Helsinki, Finland.

In 1953 Lobitz & Campbell (1) found normal sweating responses to both cholinergic and adrenergic stimulation in subjects with atopic dermatitis (AD). In that study they used a non-controlled qualitative imprint technique. Subsequently, quantitative studies have been performed on forearm skin and have shown in AD either increased (2, 3) or normal sweating responses (4) to cholinergic stimulation. Investigations using adrenergic stimulation also gave varying results (5, 6).

Our recent results revealed in back skin of AD subjects depressed sweat responses to methacholine (MCH) (7, 8). Since quantitative studies comparing the cholinergic and adrenergic stimulation in AD are lacking, MCH-induced and adrenaline-induced sweating responses in this study were compared in back and forearm skin in AD and non-atopic subjects (NA), by means of evaporimetry. The suitability of this technique for these purposes has previously been proven and the MCH concentration (5 x 10^{-7} mol/l) was best suited for routine sweat stimulation (9).

MATERIALS AND METHODS

Subjects

The subjects (mean age 20.6 years) were young males from the Central Military Hospital, Helsinki. Informed consent was obtained from all participants. The atopics had mild or moderate AD (10) without or with allergic rhinitis. All topical therapy had been interrupted at least 3 days previously and peroral or nasal medication one week prior to sweat tests. Phototherapy or sunbathing less than one month prior to testing was a criterion for exclusion. The NA subjects were either healthy, had visited the outpatient ward for a suspected venereal disease, or they had a minor non-atopic dermatosis.

Test procedure

Tests were carried out on clinically normal-looking back and/or forearm skin during a winter season under normal laboratory conditions (mean room temperature 23.1°C, mean RH 28%). The subjects rested quietly supine with the upper body unclothed. After a 20 min adaptation period, baseline water loss (BWL) and skin temperature at the test sites were measured (Exacon thermometer, Exacon Scientific Instruments, Taastrup, Denmark). Methacholine chloride (Methylchol, Sigma) or adrenaline were given intracutaneously in 0.1 ml volumes using 27-gauge needles (9).

The rate of BWL and, after sweat stimulation, the peak evaporation rate of total cutaneous water loss (CWL) were recorded with an evaporimeter (Evaporimeter EP 1, ServoMed, Stockholm, Sweden) (11). The pure sweat loss rate (SL) was calculated by subtracting BWL from the corresponding CWL value. In this study the term BWL was preferred instead of the term transepidermal water loss (TEWL) because the sweat gland function was not inhibited by an anticholinergic drug (12). The potential sweating component (resting sweat) in BWL could increase the amount of TEWL and the level of total cutaneous water loss (CWL) but was not considered to affect the SL level. All water loss data were expressed as g/m²h. Series 1. MCH-induced sweating responses were compared on forearm and back skin in 34 AD and 38 NA subjects with the standard suprathereshold concentration 5 x 10^{-7} mol/l.

Series 2. Sweat responses to two different adrenaline concentrations were examined in back and forearm skin. Using a suprathereshold concentration of 5 x 10^{-8} mol/l, comparisons were made in 31 AD and in 32 NA subjects, and at tenfold higher concentration in 22 AD and 22 NA control subjects.

Series 3. Sweat responses to both adrenaline and MCH suprathereshold concentrations in the same individual were conducted in symmetrical contralateral skin areas, either on the back (AD, n = 20; NA, n = 27), or both back and forearm (AD, n = 18; NA, n = 16). The subjects were also included in series 1 and 2.

Statistics

The Wilcoxon rank sum test was used to compare the sweat responses in AD and NA groups and Wilcoxon matched-pairs signed-ranks test for comparison of sweat responses of back and forearm skin in both groups. Correlations were calculated with the Spearman rank correlation test.

RESULTS

Series 1

Fig. 1 presents the MCH-induced median SL values. The SL level in forearm skin in AD was 44% higher and in NA, 22% higher than for the back skin. There was a tendency toward lower SL values in AD than in NA in both areas. The difference between the groups was not significant in either back or forearm skin. Between individual SL values the correlations in
DISCUSSION

Warr dorff (3) and Kaliner (13), reporting increased cholinergic sweating responses on arm skin in AD (3) and respiratory atopy (3, 13), proposed that their findings were consistent with Szentivanyi’s concept (14) of cholinergic hypersensitivity due to an inadequate beta-adrenergic regulatory control.

In contrast to these observations we found lowered cholinergic sweating responses in the back skin of AD subjects and normal responses in respiratory atopics (7). These contradictory results might have been explained by regional differences, since hypohidrosis on one area may lead to compensatory hyperhidrosis on other area. However, in this study, no hyperhidrosis was found on AD forearm skin. Rather, the present and the preliminary findings (15) are in agreement with those obtained by Murphy et al. (4) who, using acetylcholine stimulation, found no increase in the numbers of activated sweat glands on arm skin of AD patients.

According to our previous results the sweating response to MCH was more significantly lowered in dry-looking AD skin than in normal-looking AD skin (7). In this study the hypohidrotic trend on normal-looking AD skin was similar in both back and forearm skin, though the differences did not reach the level of statistical significance.

The physiological significance of adrenergic sweating is not adequately understood. Opinions on the existence of periglandular adrenergic nerves are divided (16, 17, 18) and the coupling of adrenergic and cholinergic stimulus-secretion is not yet clear (19, 20). The demonstration of several neuropeptides around the sweat glands (21, 22) and some neuropeptides also over the membranes of secretory cells within the eccrine sweat glands (22) may in the near future give more information about the complex nervous control of eccrine sweating.

At the lower concentration of adrenaline (5 × 10⁻⁴ mol/l)
the sweating responses in AD and NA subjects were fairly equal. As expected, the responses increased significantly in
NA subjects with the tenfold higher concentration, particularly on the back skin. In AD subjects, no increase occurred
at the higher concentration; rather, there was a slight depression in both areas. Also Warndorff & Neefs (5) found a low-
erated sweating response to adrenaline in forearm skin in 8/10 patients with an atopic disposition, compared with 6/16 in
other non-ichthyotic dermatological subjects, whereas Thune & Kocsis (6) observed depressed values in AD patients
only in the autumn.

Adrenaline possesses alpha- and betalaminetic activity. Reports on sweating responses induced by alpha- and beta-
adrenoceptor agonists have been contradictory (19, 20). Warndorff & Hamer (23) noted increased sweating responses to
the non-selective beta-agonist isoproterenol in atopic subjects. On the other hand, Sato & Sato (24) found a normal response to
the same stimulant in one patient with generalized AD.

The reason for a weaker adrenaline response in the AD group may not be related to the extent of vasocstriction,
since no difference was found in adrenaline-induced vasoconstriction curves or skin temperatures in AD patients vis-
avis non-atopics (25).

On the other hand Hörmqvist et al. (26) found in AD - especially in summer - a significantly increased sensitivity of
dermal vessels to blanching in response to the alpha-agonist phenylephrine and also to the beta-agonist isoproterenol,
especially in winter.

The reasons for the cholinergic and adrenergic sweating disturbances in AD observed in this study are not clear. In
both subject groups the adrenergic sweating response was about 30% in back and about 40% in forearm skin of the
corresponding cholinergic suprathereshold response. Sato &
Sato, using maximum drug concentrations, found that the
responses to adrenaline were approximately one-tenth of that
evoked by an identical dose of MCH (24). There was a positive
correlation between the individual responses to MCH and
adrenaline on the forearm skin of AD subjects. In this group
there were subjects demonstrating low sweat responses to both
MCH and adrenaline. This suggested that the mechanism of
swell disturbances for both drugs was the same. Unfortunately,
individual comparisons were only performed with the
low suprathereshold concentration.

In conclusion, cholinergic hyperreactivity could not be
demonstrated in AD skin. Rather, there was a tendency to
hidhidosis. With a low adrenaline concentration, no swelling
disturbance was observed in AD, but at a higher adrenaline
concentration, a tendency to hidhodosis was observed, particularly on back skin.

REFERENCES

1. Lobitz WC Jr., Campbell CJ. Physiologic studies in atopic
dermatitis (disseminated neurodermatitis) I. The local cutaneous
response to intradermally injected acetylcholine and epinephrine.
2. Rovensky J, Saxl O. Differences in dynamics of sweat secretion in
3. Warndorff J.A. The response of the sweat gland to acetylcholine in
4. Murphy GM, Smith SE, Smith SA, Greaves MW. Autonomic
function in cholinergic urticaria and atopic eczema. Br J Dermatol
5. Warndorff JA, Neefs J. A quantitative measurement of sweat
production after local injection of adrenaline. J Invest Dermatol
1971; 56: 384-386.
6. Thune P, Kocsis M. Effects of adrenergic stimulating and blocking
agents on eccrine sweat secretion in atopic dermatitis and psoria-
7. Kiistala R, Kiistala U, Pakkinen MU. Local cholinergic sweat
8. Pakkinen MU, Kiistala R, Kiistala U. Baseline water loss and
cholinergic sweat stimulation in atopic dermatitis: A gravimetric
measurement of local skin water loss. Arch Dermatol Res 1991;
283: 382-386.
Acta Derm Venereol (Stockh) 1980; (Suppl.) 92: 44-47.
12. Pinnagoda J, Tupker RA, Agner T, Sjöqvist A. Guidelines for tran-
sudational water loss (TEWL) measurement. A report from the
standardization group of the European Society of Contact Derrmat.
13. Kaliner M. The cholinergic nervous system and immediate hyper-
sensitivity. In: Eccrine sweat responses in allergic patients. J Al-
14. Szentivanyi A. The beta adrenergic theory of the atopic ab-
normality in bronchial asthma. J Allergy 1968; 203-232.
sweating response in atopic dermatitis. Abstracts, XVI Congress-
sus Internationalis Dermatologica, Tokyo, 1982; 320.
16. Uno H. Sympathetic innervation of the sweat glands and pilocere-
tr muscle of macaques and human beings. J Invest Dermatol
17. Landis SC, Keele E. Evidence for neurotransmitter plasticity in vivo:
Developmental changes in properties of cholinergic sympa-
18. Tanino H, Vuadal A, Reehardt L. The distribution of sympathetic
adrenergic, tyrosine hydroxylase- and neuropeptide Y-immuno-
reactive nerves in human axillary sweat glands. Histochemistry
1986; 85: 117-125.
20. Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and
their disorders. I. Normal sweat gland function. J Am Acad
21. Tanino H, Vuadal A, Reehardt L. The distribution of substance
P, CGRP-, galanin- and ANP-like immuno reactive nerves in
22. Reddy DJ, Shaw C, Armstrong EP, Johnston CF, Buchanan KD.
Vasoactive intestinal peptide (VIP) and peptide histidine methio-
nine (PHM) in human eccrine sweat glands: demonstration of
innervation, specific binding sites and presence in secretions. Br J
23. Warndorff JA, Hamer M. The response of the sweat glands to
beta-adrenergic stimulation with isoprenaline. Br J Dermatol
1974; 90: 263-268.
fibrosis sweat glands in vivo and in vitro. J Clin Invest 1984; 73:
1763-1771.
25. Kiistala R. Adrenaline-induced local sweating and vasoconstric-
tive responses in atopic skin [in press].
vessel reactivity in atopic dermatitis and its correlation to serum