Expression of Intercellular Adhesion Molecule-1 (ICAM-1) in Benign Naevi and Malignant Melanomas

NILS LAUGE HANSEN, 1, 2 ELISABETH RALFKJAER, 2 KLAUS HOU-JENSEN, 2 KRISTIAN THOMSEN, 3 KRZYSZTOF T. DRZEWIECKI, 4 ROBERT ROTHLEI 5 and GUNHILD L. VEJLSGAARD 1, 5

1 Laboratory of Immunology, Department of Dermatology, Bispebjerg Hospital, Departments of 2 Pathology, 3 Dermatology and 4 Plastic Surgery, Righospitalet, University of Copenhagen, Copenhagen, Denmark, and 5 Department of Pharmacology, Boehringer Ingelheim, Connecticut, USA

Intercellular adhesion molecule-1 (ICAM-1) is a membrane-bound glycoprotein that is a ligand for lymphocyte function-associated antigen-1 (LFA-1) and is important for a number of cell adhesions in immune reactions. The molecule is expressed by several cell types (e.g., macrophages, endothelial cells, keratinocytes, melanoma cells and cell lines) and there are some indications that expression of this molecule in melanocytic lesions is confined to malignant tumours and is more pronounced in metastatic and advanced tumours than in earlier lesions. In an attempt to elucidate this issue, we have studied biopsy samples from benign naevi (n=7) and malignant melanomas (n=33) regarding reactivity with monoclonal anti-ICAM-1 (CDS4). The results indicate that the majority of malignant melanomas are ICAM-1-positive. The most abundant staining is seen in metastatic melanomas. In primary melanomas, staining is more variable and generally weaker. However, no correlation was found between the degree of ICAM-1 labelling and the degree of tumour invasion. Furthermore, ICAM-1 expression was not confined to malignant lesions, but was also seen in benign naevi. These data contrast with earlier reports and indicate that ICAM-1 expression is unlikely to be of major prognostic or diagnostic value in melanocytic tumours. Key word: ICAM-1.

(accepted June 1, 1990.)

G. L. Vejlsgaard, Department of Dermatology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.

Acta Derm Venereol (Stockh) 71

Intercellular adhesion molecule-1 (ICAM-1) is a 90 to 114 kD membrane-bound glycoprotein that is encoded by genes of the super immunoglobulin (Ig) family and consists of five extracellular domains, a transmembrane portion, and a cytoplasmic tail (1, 2, 3). The molecule is a ligand for LFA-1 (1, 4), and there is now ample evidence that adhesion between LFA-1-positive leukocytes and ICAM-1-positive antigen-presenting cells is crucial for many immune reactions (5, 6).

Whereas LFA-1 is confined to haemopoietic cells (7), ICAM-1 is more widely distributed and has been identified not only on antigen-presenting macrophages, but also on activated lymphoid cells, thymic epithelium, endothelial cells, and keratinocytes in diseased skin (8, 9, 10).

More recently, ICAM-1 has also been detected on melanoma cells and cell lines (11-14), and there are some indications that expression of this molecule occurs mainly in metastatic melanomas and advanced primary tumours (13, 14). These findings have suggested that ICAM-1 may play a role in the metastatic or invasive potential of these neoplasms. In an attempt to elucidate this issue, we have studied biopsy samples from benign naevi and malignant melanomas immunohistochemically for reactivity with monoclonal anti-ICAM-1 (CDS4).

MATERIAL AND METHODS

Biopsy samples

Biopsy samples were obtained fresh, frozen in a mixture of 2-methylbutane and dry ice and stored at -80°C until staining. The diagnoses are listed in Table 1 and were made in accordance with standard histological criteria, as described in detail elsewhere (15).

Processing of biopsy samples

Cryostat sections were air-dried overnight at room temperature, fixed in acetone for 10 min and either stained immediately or wrapped in aluminium foil and stored at -80°C until staining. In the latter instance, sections were allowed to warm to room temperature prior to unwrapping.

Immunohistochemical staining procedures

Cryostat sections were incubated with monoclonal anti-ICAM-1 (R6-5-D6 (9)) and stained using either the alkaline phosphatase: anti-alkaline phosphatase (APAAP) technique (16) or a three-stage immunoperoxidase method.
Table 1. Results of the staining of benign naevi and malignant melanomas.

<table>
<thead>
<tr>
<th>Diagnosis*</th>
<th>No. of cases</th>
<th>ICAM-1+</th>
<th>ICAM-1-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign naevi</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>SSM, level III</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>SSM, levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV + V</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>LM, level III</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NM, levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV + V</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Melanoma metastases</td>
<td>12</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

*SSM, superficial spreading melanoma; LM, lentigo malignant melanoma; NM, nodular melanoma.

RESULTS

Results from the staining of benign naevi and malignant melanomas are summarized in Table 1.

In 7 benign naevi (6 intradermal naevi and 1 halo naevi) the tumour cells were ICAM-1-positive in all cases (see Fig. 1). Six cases were strongly reactive, while the remaining naevi showed a weaker reactivity.

In primary malignant melanomas, 17 of 21 cases were ICAM-1-positive. The pattern and intensity of the staining reaction was variable. Nine cases showed a weak focal staining of the tumour cells at the periphery of the lesion; 4 cases showed an intermediate degree of staining with either scattered foci of positive cells or a more generalized, but weaker labelling of most of the cells; and 4 cases showed a strong staining of most of the tumour cells. No correlation was found between the pattern or intensity of the staining and the level of invasion (see Table 1).

In melanoma metastases, 11 of 12 cases were strongly positive. The remaining case was ICAM-1-negative.

Keratinocytes above the benign naevi were ICAM-1-negative in all cases, while a small number of keratinocytes were ICAM-1-positive in 4 of the 21 cases of malignant melanoma. In all sections studied, ICAM-1-positive endothelial cells could also be found.

DISCUSSION

Several observations have suggested that host immune reactions play a critical role for the behaviour of malignant melanomas. It is well known that malignant melanomas may regress spontaneously, that many melanomas are surrounded by a heavy inflammatory infiltrate, that the inflammatory cells often express activation associated markers (17) and that melanoma cells may express molecules (e.g. HLA-DR) which are implicated in interactions be-

Fig. 1 Benign naevi stained for ICAM-1 with monoclonal antibody R6.5-D6 with the use of a three-stage immunoperoxidase method (A and B, 200 and 300, respectively). There is a labelling of both endothelial cells and the benign naevus cells.
between leukocytes and target cells (18). However, attempts to correlate these features with prognosis and/or level of tumour invasion have not been successful.

Intercellular adhesion molecule-1 (ICAM-1) is a 90 to 114 kD membrane-bound cell adhesion molecule that is involved in immune reactions and acts as a ligand for lymphocyte function-associated antigen-1 (LFA-1) (1, 4). The expression of ICAM-1 is regulated by cytokines, and recent studies have shown that melanoma cells and cell lines may be ICAM-1-positive (11–14). Furthermore a correlation between level of invasion and ICAM-1 expression has been found (13, 14). These findings have attracted considerable interest because of the possible use of ICAM-1 as a diagnostic and prognostic marker in melanoma.

In this study, biopsy samples from benign naevi and malignant melanomas have been examined regarding reactivity with monoclonal anti-ICAM-1 (CD54). The results indicate that the great majority of metastatic and primary melanomas are positive for ICAM-1. The most abundant staining was seen in metastatic lesions in which virtually all of the tumour cells were strongly ICAM-1-positive. In primary melanomas, staining was more variable and generally weaker. No correlation was found between the expression of ICAM-1 and the level of invasion. Furthermore, ICAM-1 was not confined to malignant lesions, but was also seen in all benign naevi.

These findings are in contrast to other recent studies which have suggested that ICAM-1 expression is rare in benign naevi and is directly correlated to level of invasion in malignant lesions (see above). There are no obvious explanations for the discrepancy between these studies and the present report. It has been suggested that the expression of ICAM-1 by the melanoma cells might result from secretion of cytokines by the surrounding lymphocytic infiltrate and that the degree of activation of these cells might be more pronounced in deep than in superficial lesions (resulting in a greater secretion of cytokines and therefore a stronger ICAM-1 expression in the deep lesions). However, in this report, no correlation was found between the expression of ICAM-1 and the degree of lymphocytic infiltrate or the level of invasion. Furthermore we found ICAM-1 expression in benign naevi. These tumours are relatively inactive with few or no surrounding lymphocytes and hence should not be expected to be exposed to significant amounts of cytokines.

In conclusion, whatever the mechanism(s) of ICAM-1 expression in melanomas might be, our results indicate that expression of this molecule is unlikely to be of major significance in terms of prognosis and/or diagnosis of these neoplasms.

REFERENCES

13. Holzmann B, Brocker EB, Lehmann JM, et al. Tumor progression in human malignant melanoma: five stage-
Neurogenic Inflammation Induced by Capsaicin in Patients with Psoriasis

WIESLAW GLINSKI, MARIA GLINSKA-FERENZ and MONIKA PIEROZYNSKA-DUBOWSKA

Department of Dermatology, Warsaw School of Medicine, Warsaw, Poland

Increasing doses of capsaicin were applied topically to the forearm skin of 30 patients with psoriasis, 16 patients with systemic scleroderma and 16 healthy volunteers. Only one-third of the patients with psoriasis responded with neurogenic inflammation to capsaicin doses of 0.125 and 0.25 μg/cm² in contrast to 81% of scleroderma patients and all the normal controls, who showed a positive cutaneous reaction. Higher doses of capsaicin (0.5–4 μg/cm²) were required to induce erythema and flare in patients with late-onset psoriasis (after 21 years of age) as well as in patients with more than 40% of skin surface involved with psoriatic lesion. Key word: Neuropeptides.

(Accepted May 21, 1990.)


W. Glinski, Department of Dermatology, Warsaw School of Medicine, 82A Koszykowa Str, 02008 Warsaw, Poland.

A triple response of skin – local redness, flare and wheal – after external application of capsaicin is mediated by substance P (SP) (1–3). This neuropeptide is generated in the dorsal root ganglia and is transported to peripheral sensory nerve endings where upon trauma SP is released by antidromic activation through the axon collaterals, resulting in neurogenic inflammation (2, 4–6). SP is able to induce histamine release from human skin mast cells in a dose-dependent manner (7, 8). This reaction is due to the polybasic structure of SP and it is receptor mediated, since SP analog exhibits antagonist activity (9).

It is known that capsaicin enhances the release of SP from the sensory neurons and nerve terminals in the central and peripheral nerve system (1, 6), as well as inducing tachyphylaxis after repeated applications (10, 11).

0.025% capsaicin ointment has been reported to improve psoriatic plaques when applied for 4 weeks (12). This is consistent with the hypothesis that skin neuropeptides (including SP) may play an important role in the induction of psoriatic lesions (13). Two reports on the disappearance of psoriasis after cutaneous nerve sectioning (13, 14), which resulted in the depletion of SP from the skin area innervated by the sensory nerve endings seemed to support this theory.

However, to our knowledge no experimental data are available on the quantitative capsaicin-induced SP-mediated erythemal skin response in psoriasis. This compound has been previously utilized as a 0.1% solution in the concentration of 4 μg/cm² of skin either for skin testing or for induction of tachyphylaxis. This capsaicin concentration induces the reaction in almost all patients studied (11).

The purpose of the present paper was to determine the dose responsiveness to topical capsaicin in patients with psoriasis, as compared with normal controls.

MATERIAL AND METHODS

The studies were performed on groups of 30 patients with psoriasis, 16 healthy volunteers and 16 patients with systemic scleroderma. The results were analysed according to clinical criteria previously used (15), such as disease activ-