Differentiation of the Basal Cell Epithelioma-like Changes Overlying Dermatofibroma

HIROSHI FUJISAWA1, YUJI MATSUSHIMA2, MINORU HOSHINO1, TORU BABA2 and KENICHI UYENO2

1Division of Dermatology, Mito National Hospital, Mito City, and 2Department of Dermatology, University of Tsukuba Tennoji, Tsukuba City, Japan.

Epidermis overlying dermatofibroma rarely displays basal cell epithelioma-like changes (BCE-like changes). Based on the histopathological findings, whether BCE-like changes are induced by dermal lesion or adnexal regression secondary to the solid fibrotic growth remains to be explored. From the standpoint of differentiation, we examined the BCE-like changes overlying dermatofibroma, normal epidermis, and hair follicles. PNA and two kinds of anti-keratin monoclonal antibodies were used to detect markers for epidermal differentiation. When PNA and anti-keratin monoclonal antibody (34betaB4) were used, no difference was observed in the staining patterns among BCE-like changes, hair follicles or normal basal cells. With the other anti-keratin antibody (34betaE12), BCE-like changes and normal basal cells were recognized, though the hair matrix was not. Thus the results obtained indicate that normal basal cells show the most similar differentiation to BCE-like changes. Key words: Keratin; PNA.

(Accepted December 28, 1990.)

Various epidermal changes can be observed in dermatofibroma. Basal cell epithelioma-like changes (BCE-like changes) are relatively rare epidermal changes. Although many investigators have written about BCE-like changes (1–6), the question as to whether or not these changes are induced by dermal lesions (3–5) or adnexal regression secondary to the solid fibrotic growth in the dermis (6) remains to be explored. The first theory focuses on the pluripotential of the epidermal cell and the second theory on the histopathological findings which are indicative of regressive changes of pre-existing cutaneous adnexa. We cannot obtain a more persuasive conclusion in regard to the origin of BCE-like changes from histopathological examination. Thus, in order to elucidate the origin of BCE-like changes, another method was necessary.

It was thought that it might be useful to investigate the differentiation of BCE-like changes. A kind of lectin, peanut agglutinin (PNA, Vector Laboratories, Burlingame, Calif.) and two kinds of anti-keratin monoclonal antibodies were used to detect markers for differentiation. One recognizes 68 K dalton (kD) keratin peptides (34betaB4, Enzo Biochem), the other recognizes 56, 56.5, 58 and 68 kD keratin peptides (34betaE12, Enzo Biochem). Differentiation of BCE-like changes was examined and compared with that of the follicular apparatus and normal epidermis.

MATERIAL AND METHODS

A 61-year-old woman with a tender bluish firm lesion 11-mm in diameter on her right arm for approximately 2 years came to our hospital for treatment. The lesion was excised and a hematoxylin-eosin stained section showed a dermatofibroma whose overlying epidermis showed BCE-like changes.

Sections 5 μm in thickness were made from the specimen, fixed with formalin and embedded in paraffin wax. Sections were deparaffinized in the usual way. Three normal skin samples containing hair follicles were used as controls.

Staining with PNA

After normal goat serum was instilled, sections were allowed to stand for 30 min at room temperature and reacted with biotinylated lectin (25 μg/mL) at room temperature for 30 min. They were washed with phosphate-buffered saline (PBS) and reacted with avidin-biotin-peroxidase complex (ABC, Vector Laboratories) at room temperature for 30 min and stained with 3,3′-diaminobenzidine (DAB, Sigma Chemicals). The section was counterstained with hematoxylin.

Staining with anti-keratin monoclonal antibody

The section was incubated in 0.1% trypsin for 30 min. After washing with PBS, it was reacted with 34betaB4 or 34betaE12 which was diluted to 1:1000 for 12 h at 4°C. After washing with PBS, it was reacted with biotinated rat monoclonal antibody to mouse IgG (Zymed Laboratories). It was diluted to 1:1000, at room temperature for 1 h. The subsequent procedures were the same as for staining with PNA.
RESULTS

The staining patterns of BCE-like changes with PNA, 34betaB4 and 34betaE12 were examined. With PNA, the plasma membrane was stained in the upper part, except in BCE-like changes. The staining area was almost the same as it was with 34betaB4 (Fig. 1A). With 34betaB4, the lower part of the epidermis, consisting of BCE-like changes, was not stained, while the cytoplasm of the upper part of the epidermis did stain (Fig. 1B). With 34betaE12, the cytoplasm of the whole epidermis which contained BCE-like changes was stained (Fig. 1C).

PNA recognized neither the hair matrix nor the lower part of the cells of the inner layers which consist of hair medulla, cortex, cuticles and inner root sheaths in the anagen stage. The lower part of the outer root sheath either did not stain or was faintly stained. 34betaB4 did not recognize the lower portion of the hair follicle. 34betaE12 recognized neither the hair matrix nor the lower parts of cells of the inner layers. The cytoplasm of the outer root sheath in the lower part was either not recognized or only faintly recognized. The staining intensity of the cytoplasm of the outer root sheath increased toward the upper part.

DISCUSSION

In the normal epidermis, PNA bound to the plasma membrane of the epidermis, except for the basal layer, 34betaB4 recognized the cytoplasm of the suprabasal epidermal cells, while 34betaE12 recognized the cytoplasm of the whole epidermis. These results concur with those of other studies (7–10).

Our results showed that BCE-like changes indicate negative stains with PNA and 34betaB4 and positive stains with 34betaE12. On the other hand, the hair matrix in the anagen stage was recognized by neither PNA nor by the two kinds of anti-keratin monoclonal antibodies. Thus the staining pattern of BCE-like changes was more similar to the normal basal layer than was the hair matrix. From the viewpoint of differentiation, we can indicate the possibil-
ity that BCE-like changes are indeed an extension of the basal cells of the epidermis, as long as three markers are used. However, it was observed that in the telogen stage of hair, the staining area of 34betaE12 spread and the non-staining area in the hair follicles almost disappeared (data unpublished). BCE-like changes showed the same staining patterns as the hair follicles in the telogen stage. We cannot deny the hypothesis that BCE-like changes are adnexal regression secondary to fibrotic growth in the dermis (6). We feel that if this is true, then the regressive hair is in the telogen stage.

REFERENCES

Cyclosporin Maintenance Therapy for Severe Atopic Dermatitis
M. J. KORSTANJE1,2 and W. J. B. M. VAN DE STAALK1
1Department of Dermatology, Academic Hospital Maastricht, The Netherlands, and 2Department of Dermatology, University of Wales College of Medicine, Cardiff, Wales, Great Britain

Twelve patients with chronic severe atopic dermatitis were treated with cyclosporin A (CsA) in a dose of 5.0 mg/kg/day. All patients except one showed a good therapeutic response. After week six, the CsA dose was reduced until an increased activity of atopic dermatitis was noticed (minimal effective dose). The minimal effective dose fluctuated with the severity of the atopic dermatitis. The mean minimal effective dose was approximately 4.0 mg/kg/day. Maintenance therapy with CsA for atopic dermatitis seems to be effective but may be hampered by side effects in the same way as CsA therapy is hampered by side effects in the treatment of psoriasis.

(Accepted January 21, 1991.)

Acta Derm Venereol (Stockh) 71

The therapeutic value of oral cyclosporin A (CsA) in atopic dermatitis (AD) has been reported (1,2). However, AD flares after discontinuation of CsA (2). Therefore, in cases of chronic severe AD, maintenance therapy with CsA seems to be necessary. We carried out an open trial to determine the minimal effective dose (MED) and effectiveness of CsA in long-term treatment of AD.

PATIENTS AND METHODS
Six men and 6 women with ages ranging between 20 and 68 years were selected. They all fulfilled the diagnostic criteria for AD (3). At least 30% of the total skin surface was involved, the eczema was recalcitrant to conventional therapies and was chronic for at least a year. Topical and systemic therapies or ultraviolet therapy had been discontinued 2 weeks prior to treatment with CsA. During CsA