pletely and during the follow-up period there were no signs of further improvements.

Grenz ray therapy has proved to be effective in particularly psoriasis of the scalp (2,3). Therefore, one possible explanation for the results in this study may be the small penetration of grenz rays. The half-value depth in tissue is only 0.5 mm which might be enough for scalp psoriasis but not for the thick and pustular lesions of pustulosis palmoplantaris. However, grenz ray therapy can act as an adjunct to other therapy forms, since it is a fast and convenient method. The combination of oral – etretinate with grenz rays has to be evaluated because of other therapy modalities as PUVA has been proved to be much more effective when combined with etretinate (1).

ACKNOWLEDGEMENT

We wish to thank Mrs Annelle Eriksson for technical assistance.

REFERENCES

The Effects of Tetracyclines and Erythromycin on Complement Activation In vitro

E. INGHAM

Department of Immunology, University of Leeds, Leeds, W. Yorkshire, England

The effects of tetracycline, minocycline and erythromycin on complement activation in vitro were studied. At concentrations of 100 mg/l or less, these antibiotics did not inhibit the capacity of Propionibacterium acnes to cleave C3 in normal human serum or in serum chelated of Ca²⁺ allowing complement activation by the alternative pathway alone. The antibiotics had no effect (at 100 mg/l) on total haemolytic activity of complement in normal human serum. This study did not provide evidence to support the hypothesis that the efficacy of these antibiotics in the therapy of inflammatory acne vulgaris can be explained by inhibition of complement activation.

(Accepted April 9, 1990.)

Acta Derm Venereol (Stockh) 1990; 70: 531–534.
E. Ingham, Department of Immunology, The University of Leeds, The General Infirmary, Leeds LS1 3EX, Great Britain.

Tetracycline and erythromycin antibiotics have been used for many years in the treatment of acne vulgaris. However, their mode of action in this disease is not fully understood. It has been suggested that antibacterial activity alone is not sufficient to explain their beneficial effects and that interaction with host defence mechanisms may contribute to their efficacy (1). One of the earliest histologically-apparent signs of inflammation in acne lesions is the deposition of complement C3 at the basement membrane zone of the majority of comedones and in the walls of adjacent dermal blood vessels (2,3). The demonstration of C3, in the absence of immunoglobulins and C1q, has been interpreted as alternative pathway activation of complement (2,3). The contents of acne lesions have been shown to activate complement by the classical pathway (4) and individually expressed comedones have been shown to activate complement by the alternative pathway in vitro (5). The extent of complement activation has been shown to correlate with numbers of Propionibacterium acnes present in comedonal extracts (5).

The tetracycline antibiotics have been shown to depress the bacteriocidal activity of human serum (6). It has been suggested that this effect was due to impairment of complement activation by the alternative pathway (6). In view of the possibility that the efficacy of these antibiotics in acne therapy might be explained, at least in part, by inhibition of complement activation, this study was undertaken to test the effects of tetracycline, minocycline and erythromycin on complement activation in vitro.

Acta Derm Venereol (Stockh) 79
P. acnes for complement activation

P. acnes (strain P-37; type I; isolated from a blackhead lesion) was grown in Brain Heart Infusion broth (Difco) plus glucose (5 g/l) for 72 h in static batch culture in an atmosphere of H₂/CO₂ (90:10; v/v) at 37°C. P. acnes were harvested by centrifugation, washed and resuspended at 10⁶ cells/ml in phosphate-buffered saline (PBS; pH 7.4). The cells were then formalized (1% v/v formalin in PBS for 24 h), washed a further three times in PBS and resuspended in PBS at 10⁶ cells/ml.

Antibiotics
Fresh stock solutions of tetracycline HCl, minocycline HCl and erythromycin (all obtained from Sigma) were prepared by dissolving the antibiotics in methanol (BDH, anadlar) at 10 g/l. Immediately prior to use the stock antibiotics were diluted 1:10 in PBS to give the desired final concentration.

Effects of antibiotics on the capacity of P. acnes to cleave C₃ in normal human serum

Duplicate serum samples (100 μl) were incubated with P. acnes (20 μl; 10³/ml) and the antibiotic (15 μl) or PBS (15 μl) at 37°C for one hour. In one series of experiments, 0.2 M-EGTA [ethyleneglycol bis-(aminoethyl)-tetra acetate acid; 15 μl in PBS] plus 0.3 M MgSO₄ (15 μl in PBS) was included to allow complement activation by the alternative pathway only. In a second series of experiments, 30 μl of PBS was added, allowing complement activation to proceed via both the classical and alternative pathways. At time zero and after one hour at 37°C, 10 μl of 0.2 M EDTA (ethylenediamine-tetra acetate acid; Sigma) was added to 75-μl aliquots of each reaction mixture to arrest C₃ cleavage by either pathway. The aliquots were frozen at −70°C until assayed for C3 cleavage by standard 2-dimensional electrophoresis as described previously (5). The extent of C₃ cleavage was calculated as the percentage of total C₃ (B₁C plus B₁A peaks) migrating as cleavage product (B₁A peak) at one hour, minus the percentage C₃ cleavage at time zero.

Effects of antibiotics on total haemolytic complement activity of serum, using a 50% haemolytic end-point

Serum (450 μl) was incubated with 50 μl of each antibiotic (1 g/l; 5 μl of a 10 g/l solution in methanol plus 45 μl PBS) or 50 μl diluent (45 μl PBS plus 5 ml methanol) for one hour at 37°C and then immediately frozen at −70°C, until assayed for total haemolytic complement.

C₁H₅₀ determinations were carried out in duplicate in Isogeners buffer (complement fixation test buffer, Oxoid Ltd, plus 10% w/v gelatin) using conventional methodology (8). The test sera (with antibodies) were assayed in Isogeners buffer containing 100 mg/l of the appropriate antibody, control sera, in absence of antibodies. Briefly, freshly sensitized sheep red blood cells (S-SRBC; 1 ml; 5×10⁸, Gibco) were added to each of six appropriate dilutions of the test and control sera (6.5 ml) in glass tubes. Total lysis and spontaneous lysis controls were included. After 90 min at 37°C, tubes were centrifuged (2000 g; 10 min) and the optical density (541 nm) of the supernatants determined. The 50% haemolytic end-point for each test and control serum was determined by dividing the OD 541 nm of each

Fig. 1. Effects of antibiotics (100 mg/l) on C₃ conversion by P. acnes in normal human serum. (a) Unchelated serum, analysis of variance demonstrated no significant effects of antibiotics. (b) Serum chelated of Ca²⁺, allowing alternative pathway activation only. Analysis of variance demonstrated a significant effect amongst the antibiotics (p < 0.05). Analyses were carried out on data subjected to angular transformation (sin⁻¹proportion). Data was back-transformed to percentages before being plotted graphically. Results are expressed as means (n=6) ± 1/2 L.S.D. (p < 0.05). Error bars attached to tests (with antibiotics) which do not overlap with error bars attached to the control denote significant difference.

MATERIALS AND METHODS

Serum samples
Samples of blood were drawn by venepuncture from 6 normal adults. The blood was allowed to clot at 37°C for 1 h and the serum obtained by centrifugation. Sera were used immediately or stored at −70°C until use.

Acta Derm Venereol (Stockh) 79
Difference [L.S.D. as recommended by Sokal & Rohlf (9)], it was demonstrated that erythromycin at 100 mg/l significantly enhanced C3 cleavage by P. acnes via the alternative pathway \((p<0.05) \).

Effects of antibiotics on total haemolytic complement activity of serum

In order to determine whether the antibiotics affected the functional activity of complement, six normal human sera were incubated with and without minocycline, tetracycline and erythromycin at 100 mg/l and then assayed for C‘H 50 in the presence and absence of the antibiotics. The results are shown in Fig. 2. This data were analysed using paired t-tests. There was no significant effect of the antibiotics on the total haemolytic complement activity in normal human serum.

DISCUSSION

Cleavage of the major complement protein, C3, is central to both the classical (Ca\(^{2+}\) dependent) and alternative (Mg\(^{2+}\) dependent) pathways of complement activation. Tetracycline, minocycline and erythromycin at above the therapeutic concentration range failed to affect C3 cleavage by P. acnes in unchelated serum.

At 100 mg/l, erythromycin significantly enhanced C3 cleavage by P. acnes by the alternative pathway. This effect was not, however, apparent in therapeutic concentration ranges (less than 10 mg/l). The mechanism of action of erythromycin in this respect is not known. However, since formalized P. acnes cells were used in these studies, a direct effect on the lability of C3 in serum would seem likely. This finding may have implications for the use of topical erythromycin therapy. All three antibiotics failed to significantly affect the functional capacity of complement to lyse sensitized sheep red blood cells at supra-physiological concentrations.

Forsgren & Gnarpe (6), concluded, from data obtained using bactericidal tests, that the tetracyclines inhibited the alternative pathway of complement activation in serum due to chelation of Mg\(^{2+}\) ions. Two observations are pertinent to these apparently contradictory findings. Firstly, Forsgren & Gnarpe (6) did not observe a decrease in the opsonic capacity of serum in the presence of tetracyclines, indicating no adverse effect on the early acting (to C3b) alternative complement pathway. Secondly, the mechanisms by which complement kills nucleated cells

Acta Derm Venereol (Stockh) 70
(e.g. Gram -ve bacteria) are poorly understood and are more complex than those involved in the lysis of erythrocytes (10, 11). It is possible that the tetracyclines impair complement-mediated killing of serum sensitive bacteria by affecting late-acting complement proteins [for example, formation of oligomeric C9, not required for the lysis of erythrocytes (11)] and not by inhibiting alternative pathway activation per se. It has been suggested that the chelating properties of tetracyclines might interfere with complement activation by affecting the concentrations of Ca$^{2+}$ and Mg$^{2+}$ (6). Since no inhibition of complement activation by the tetracyclines was observed in these studies, even at a concentration of 100 mg/L, it is unlikely that such effects accounted for the different results obtained for the tetracyclines as compared with erythromycin.

With regard to the effects of these antibiotics in the treatment of inflammatory acne, it is relevant that these drugs did not inhibit the cleavage of C3 by P. acnes. Thus, this study has not provided evidence that the efficacy of these antibiotics in inflammatory acne can be explained by their effects on complement activation. Since the tetracyclines and erythromycin have been shown to inhibit lymphocyte transformation in vitro (12, 13) and depress phagocyte functions (14) these non-antimicrobial effects may be important in their efficacy in the treatment of inflammatory acne.

REFERENCES

A Double-blind Comparison of Topical Clindamycin and Oral Minocycline in the Treatment of Acne Vulgaris
R. A. SHEEHAN-DARE, J. PAPWORTH-SMITH and W. J. CUNLiffe

Sixty-six patients with moderate to severe facial acne vulgaris were entered in a 12-week double-blind study to compare the efficacy of topical clindamycin phosphate 1% twice daily and oral minocycline 50 mg twice daily. Both treatments gave significant overall improvements from baseline observations in acne grade and inflamed lesion counts, but not in non-inflamed lesion counts. There were no significant differences between the two treatment groups in respect of acne grade, inflamed or non-inflamed lesion counts. Both treatment regimes were well tolerated. This study has shown that topical clindamycin twice