Abstract. At the present time, nothing is known of the antigenic structures or the antibody binding sites for basement membrane zone antibodies of pemphigoid patients located in the basement membrane zone of the human skin. In the course of experiments to delineate this area, we have studied the action of various enzymes in vitro. These investigations showed that the exposure of cryostat sections of human skin to the action of proteolytic enzymes (papain/trypsin) produced an increase in antibody binding capacity of the basement membrane zone for basement membrane zone antibodies. This was demonstrated by an increased intensity of fluorescence of the basement membrane zone in 17/25 of the skin samples tested from different patients and by an increase of 1-7 titre dilution steps as compared with control sections not previously incubated. From various enzymes tested the \(\alpha \) - and \(\beta \)-galactosidases in 19/21 skin samples also showed increased intensity of fluorescence, and titres increased by 1-6 dilution steps. The quantitative evaluation of our experimental results showed that incubation with galactosidases and proteolytic enzymes produced an activation independent of the titre, while there was, in addition, an inactivation dependent on the level of the initial titre produced by the action of papain and trypsin only. Furthermore, we believe these latest results, together with immunohistochemical studies on the basement membranes from the literature, allow conjecture on the possible site of enzyme action. This site must be in the immediate vicinity of the hydroxylysine on the molecule. In agreement with other authors and results, we have developed the hypothesis that the action of proteolytic enzymes causes the basement membrane zone to become antigenic, with the formation of basement membrane zone antibodies, "autoantibodies".

Key words: Bullous pemphigoid; Activation of basement membrane zone antigens; Proteolytic enzymes: \(\alpha \) - and \(\beta \)-galactosidases; Molecular biology; Induction of autoantibodies

Since the discovery of the basement membrane zone (BMZ) antibodies in patients with bullous pemphigoid (1, 7) these "autoantibodies" have been investigated many times from the clinical and immunological points of view. According to electron microscopical findings the deposition of these immunoglobulins takes place in the space between the basal cells and basal lamina (14) or is confined to the basal lamina and lamina lucida (6). Whilst immunohistochemical studies of the basement membranes of varying origin indicate the occurrence of at least three different antigenic components (8, 9), nothing is so far known about the antigenic structures or binding sites for BMZ antibodies of pemphigoid patients. In the course of experiments to delineate this region, we have investigated the action of enzymes. In a previous publication (11) it has been reported that pretreatment of cryostat sections of human skin with proteolytic enzymes produced an increase in the binding capacity of the basement membrane zone for BMZ antibodies. In continuation of these experiments, various other enzymes have been investigated with respect to this effect and the results are reported here.

MATERIALS AND METHODS
Cryostat sections of healthy human skin from different persons were incubated with enzymes of varying specificity (Table I) and after several thorough washings with Coons' buffer, were examined by the indirect immunofluorescence method against experimental preparations which had not previously been incubated (normal series), with regard to the intensity of fluorescence and level of
Table I. List of all enzymes investigated with respect to their effect on the basement membrane zone—antigens of human skin and the results obtained

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Source</th>
<th>Solution applied</th>
<th>Time of enzyme action</th>
<th>No. of skin samples investigated from different persons</th>
<th>Alterations in titre steps compared with normal controls (≠ not previously incubated)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Glucosidase</td>
<td>Boehringer Mannheim</td>
<td>20 0.1 M phosphate buffer</td>
<td>1/15/60</td>
<td>3</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>Serva</td>
<td>1000 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Collagenase</td>
<td>Boehringer Mannheim</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15/60</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>Mannheim</td>
<td>100/50 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Arylsulfatase</td>
<td>Mannheim</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Leucinaminopeptidase</td>
<td>Mannheim</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Neuraminidase</td>
<td>Mannheim</td>
<td>2 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hyaluronidase</td>
<td>Serva</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Papain</td>
<td>Serva</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>2</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Serva</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>12</td>
<td>Titre increase in 9/12 samples≠</td>
<td>None</td>
</tr>
<tr>
<td>α-Galactosidase</td>
<td>Boehringer Mannheim</td>
<td>5/10/50 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>14</td>
<td>Titre increase in 8/13 samples≠</td>
<td>None</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>Mannheim</td>
<td>10 0.1 M phosphate buffer</td>
<td>1/15</td>
<td>7</td>
<td>Titre increase in 13/14 samples≠</td>
<td>None</td>
</tr>
</tbody>
</table>

≠ For concentrations employed here see “Methods and Materials”.

RESULTS

The results of our experiments are summarized in Tables I and II, and the alterations in titre dilution steps due to the action of the proteolytic enzymes and the galactosidas compared with the non-

Table II. Average increase in titre (q; given in titre steps) after the action of different enzymes, in comparison with normal controls, as well as the calculated increase in the slopes (m; Figs. 1 and 2). For details see “Results”.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Samples with moderate initial titre (from 1:4)</th>
<th>Samples with low initial titre (1:1/1:2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>q</td>
</tr>
<tr>
<td>Trypsin</td>
<td>0.6</td>
<td>3</td>
</tr>
<tr>
<td>Papain</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>α-Galactosidase</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>1.0</td>
<td>3</td>
</tr>
</tbody>
</table>

Acta Dermatovener (Stockholm) 56
incubated controls are shown in Figs. 1 and 2. According to these, the proteolytic enzymes produced an increase in the intensity of fluorescence of the basement membrane zone in 17/25 and the galactosidases in 19/21 of the skin samples tested from different patients (Figs. 3, 4). The titres increased by 1-7 dilution steps with the proteolytic enzymes and by 1-6 dilution steps with the galactosidases compared with the previously non-incubated controls. The quantitative evaluation of our experimental results is shown in Figs. 1 and 2.

Plotting the titres of the non-incubated series against the titres of the activated series shows that there is a mutual relationship of the two quantities which is particularly obvious in the trypsin curve. If the results of the experiments with small titres (1:1 and 1:2) in the non-incubated series are ignored, then a straight line \(y = mx + q \) can be constructed from the remaining values. The constants \(m \) and \(q \) resulting from the lines given are summed up in Table II. According to this, incubation with trypsin or papain produced an activation independent of the titre, whereas there was, in addition, an inactivation dependent on the level of the initial titre. With the \(\alpha \)-galactosidase and perhaps with the \(\beta \)-galactosidase only an activation independent of titre was observed.

With a prolonged action of the proteolytic enzymes, a destruction of the BMZ and a detachment of the epidermis from the corium was observed, a finding with which the mathematical analytical results corresponded. With the galactosidases, even after a longer duration of action (up to 2 hours) there was no destruction of the antigenic area; furthermore, there was no mathematical suggestion of inactivation.
Fig. 2. Titres of basement membrane zone antibody binding (Bm-AbT), using cryostat sections of human skin, preincubated with α-galactosidase (O—O) or β-galactosidase (O—O) (ordinate) in comparison with the series not previously incubated (abscissa). Each plot (%) represents a test series using a skin biopsy specimen from different patients as antigenic substrate. Thus, skin samples were investigated from 14 persons with α-galactosidase (●) and 7 persons with β-galactosidase (○). Skin samples with moderate initial titre values (from 1:4) yielded a constant activation with both enzymes (3 titre dilution steps). Samples with a low initial titre (1:1) were considerably more activated (4 titre steps with α-galactosidase and 5 with β-galactosidase). There was no evidence of inactivation, however.

DISCUSSION

In previous publications, we have reported that activation of antigens of the basement membrane zone is possible by X-ray and ultraviolet irradiation (10) and enzymatically, by proteolysis (11). An attempt was made to explain this in terms of the law of mass action (10, 11). The results of the present work, according to which the action of α- and β-galactosidases also enhances the binding capacity of the antigenic structures of the basement membrane zones for BMZ antibodies, complement our previous results considerably.

Furthermore, we believe these latest results permit conjecture as to the possible site of enzyme action. Immunochemical studies by Kefalides (8, 9) on the basement membranes of various organs of different species demonstrated the presence of
three different antigenic components, of which one is probably collagen and the others are non-collagen glycoproteins. An essential component of this collagen is α-glucosyl-β-galactosylhydroxylysine, and, in much smaller quantities, a galactosylhydroxylysine, which cannot be more closely identified sterically. It is also known that the sites of action of papain and trypsin are carbonyl-bound lysine and arginine, respectively. Assuming that both delta-hydroxylysine and non-hydroxylated lysine react with the proteolytic enzymes mentioned, it is possible to focus attention on a relatively limited region of the molecule in our search for the site of action of the enzymic reaction. This site must be in the immediate vicinity of the hydroxylysine on the molecule. The effect of α-galactosidase would be explained if the galactose were bound by α-glycoside to the galactosyl-hydroxylysine. However, the precise binding site of the antibody molecule cannot be deduced from our results.

It is quite possible that the protein and carbohydrate hydrolases actually have a different site of action in our model investigations. Thus, lysine and

![Fig. 3. Weak basement membrane zone fluorescence displayed by the indirect immunofluorescence method, using cryostat sections of human skin as antigenic substrate. Incubation with a serum containing basement membrane zone antibodies in a dilution of 1:1 (using guinea pig tongue as antigenic substrate positive up to a dilution of 1:256). Covering with a layer of fluorescein-labeled antiserum (Behring Company) in a dilution of 1:10. Objective x10.](image)

![Fig. 4. Intensive basement membrane zone fluorescence displayed by the indirect immunofluorescence method, using cryostat sections of human skin as antigenic substrate which had been preincubated for 5 minutes with trypsin solution. Incubation with serum containing basement membrane zone antibodies in a dilution of 1:1 (same serum as Fig. 3), otherwise conditions as in Fig. 3.](image)
arginine residues might be split off from other positions on the collagen or glycoprotein molecules.

Another publication (8) provides the explanation for the inactivation of the antibody binding sites in the BMZ and the morphologically manifest destruction of structures, which we observed after longer periods of incubation with 1hc proteolytic enzymes. Collagen from the BMZ can be split into 80 peptides by the action of proteinases, particularly trypsin (8). We observed a similar effect on using collagenase, whose site of action must obviously lie too far away from the active centre to allow any demonstrable influence on the antigenic structure.

The activity of the galactosidases is probably limited to relatively isolated glycosidic bonds, so that the fact that these enzymes do not inactivate the antigen-antibody reaction in the basement membrane zone would not be surprising.

However, we are unable to explain why the individual skin specimens from different patients showed widely varying degrees of sensitivity to activation; in fact some samples could not be activated at all. It is uncertain whether this is a question of individual antigenic differences such as histocompatible antigens or whether an alteration of activation of antigens has already taken place in vivo.

The action of enzymes on the skin of pemphigoid patients should prove interesting. These investigations have as yet been unsuccessful due to technical difficulties, since in this case the antibodies are fixed in vivo in the basement membrane zone. Attempts to remove these antibodies by elution damaged the skin so severely that the preparations obtained were no longer of any practical value.

In agreement with other authors (8, 9, 12, 13) and results (5, 15, 16), we have developed the hypothesis that the action of proteolytic enzymes causes the basement membrane zone to become antigenic, with the consequent formation of BMZ antibodies—"autoantibodies". This development has been discussed in detail elsewhere (11).

REFERENCES

Received October 14, 1975

W. Remy, M.D.
Department of Dermatology
Rudolf Virchow Hospital of the Free University
Augustenburger Platz 1
Berlin 65
FRG