Abstract. The comparative pattern of \(^3 \text{H}-\text{thymidine} \) (\(^3 \text{H}-\text{T} \)) pulse labelling in lesions of psoriatic erythroderma (3 cases) and of psoriasis vulgaris (20 cases) has been studied by means of radioautography. In the epidermis, no difference was noted between the two types of lesions concerning the epidermal \(^3 \text{H}-\text{T} \) labelling index (L.I.) and the localization of labelled cells. The \(^3 \text{H}-\text{T} \) L.I. of “round” cells infiltrating the dermis was much higher in lesions of psoriatic erythroderma (4.03 ± 0.56 %) than in lesions of psoriasis vulgaris (0.62 ± 0.21 %), and the difference is highly significant \((p < 0.0001)\). The findings indicate that most of these labelled cells could well be lymphoblasts, suggesting that an immunological process is possibly involved in the pathogenesis of psoriatic erythroderma.

Key words: Autoradiography; Psoriasis; Erythroderma; Epidermis; Dermal infiltrate

Psoriatic erythroderma is usually considered as an eruption that appears suddenly and is usually linked with severe general symptoms. This “unstable” form of erythroderma (15) is widespread and does not spare any area of normal skin. The clinical features of psoriasis are often lost (15).

In many cases, the histological picture cannot be distinguished from that of other types of exfoliative dermatitis (11). The epidermis may still show enough of the characteristics of psoriasis to admit of such a diagnosis, though spongiosis and exocytosis are often found, as in eczema (10). Dermal vessels are more dilated and tortuous than in psoriasis vulgaris; they are surrounded by a more dense infiltration, mainly of mononuclear “round” cells (15).

By using the tritiated thymidine (\(^3 \text{H}-\text{T} \)) incorporation technique, it has been demonstrated that, in psoriasis vulgaris, the epidermis displays an accelerated turnover (5) since the labelling index is increased (3, 4, 13) and the transit time of cells through the epidermis is shortened (5, 14). Very few “round” cells of the dermal infiltrate are \(^3 \text{H}-\text{T} \) labelled (7).

In this study, our goal was to describe the pattern of \(^3 \text{H}-\text{T} \) pulse labelling of the epidermal cells of and “round” cells infiltrating the dermis in psoriatic erythroderma. The results will be compared with those obtained in psoriasis vulgaris.

MATERIAL AND METHODS

This study was made in three adult male patients with untreated psoriatic erythroderma. General symptoms, such as fever or joint pain, were present in each patient; two of them suffered from a severe cardiac failure. In each case, a biopsy was performed on the trunk. The classical features of psoriasis were evident in all the histological sections. Skin specimens obtained from the trunk of 20 patients with untreated psoriasis vulgaris were used as controls.

The skin samples were cut into thin slices (<1 mm) which were incubated for one hour at 37°C in a culture medium containing 2 µCi of 6-\(^3 \text{H}-\text{thymidine} \) (specific activity: 10 Ci/mM; CEN, Mol, Belgium) according to the technique of Lachapelle & Gillman (9). After washing, the specimens were fixed in 4 % buffered formalin, paraffin embedded, cut at 5 µm and processed for light microscopy radioautography. The radioautographs were stained with haematoxylin-eosin or PAS-haemalum.

In order to define the type of labelled cells infiltrating the dermis, an intradermal injection of 5 µCi of \(^3 \text{H}-\text{T} \) was performed in one of the three erythrodermic patients. A 4 mm punch biopsy of the injected site was obtained 1 hour later. Imprints were prepared according to Degos & Ossipowsky (2). They were treated histochemically for Naphthol AS-D acetate esterase(s) identification (1), fixed in 4 % buffered formalin, paraffin embedded, cut at 5 µm and processed for light microscopy radioautography. The radioautographs were stained with haematoxylin-eosin or PAS-haemalum.

The epidermal labelling index was obtained by counting 2,000 interannexial basal cells in each slide. The labelling index of “round” cells was determined as previously described (6, 7, 8). Data are expressed as mean ± 1 standard error of the mean. Statistical significance is analysed by the Student’s \(t \)-test for paired data.
RESULTS

Epidermis
Numerous labelled cells are observed in the deep layers of the epidermis, both in erythroderma (Fig. 1) and in psoriasis vulgaris (Fig. 2). No difference can be found between both diseases concerning the topography of labelling. The mean basal L. I. of erythroderma (8.52 ± 3.85%) is not significantly different (p > 0.10) from that of psoriasis vulgaris (13.3 ± 7.8%).

Dermal infiltrate
In both conditions, the dermal infiltrate consists predominantly of mononuclear cells, but it is heavier in psoriatic erythroderma. Many mononuclear “round” cells of the infiltrate are labelled (Fig. 1) in psoriatic erythroderma. As shown in Fig. 3, the 3H-T L. I. (4.03 ± 0.56%), is significantly different (p < 0.0001) from that of psoriasis vulgaris (0.62 ± 0.21%). Radioautographs of imprints treated histochemically for Naphthol-AS-D acetate esterase(s) identification in one of the three cases of psoriatic erythroderma show that all the 3H-T labelled “round” cells contain very few, if any, cytoplasmic (specific for esterases) granules. Round cells, which are strongly positive for Naphthol-AS-D acetate esterase(s) are not labelled.

Since this technique allows the distinction between cells of lymphoid origin (negative) and histiocytes (positive), the 3HT-labelled cells are probably lymphoblasts.

DISCUSSION
It is generally accepted that the “unstable” form of psoriatic erythroderma has to be distinguished from psoriasis universalis (15). The first condition is a widespread rash that appears suddenly and is associated with general symptoms, whilst the latter is a slow and progressive generalization of psoriatic lesions that become confluent (15). According to
these distinctive criteria, our 3 patients can be considered as suffering from "true" psoriatic erythroderma.

It has to be stressed that no statistical difference in the basal epidermal LI exists between lesions of psoriatic erythroderma and of psoriasis vulgaris. In both conditions the proliferative activity is increased. Wide variations appear between individual cases of psoriatic erythroderma, as previously observed for lesions of psoriasis vulgaris in different patients (3).

In psoriatic erythroderma, many endothelial cells of blood capillaries are 3H-T-labelled. A similar observation had been made in psoriasis vulgaris (7). This angiogenesis, encountered in different types of psoriatic lesions, had already been demonstrated by other methods (12).

The 3H-T LI of "round" mononuclear cells infiltrating the dermis in psoriatic erythroderma, is high, and similar to that obtained in lesions of allergic contact dermatitis (6) or lichen planus (8). On
the other hand, the 3H-T L. I. is very low in psoriasis vulgaris (7), and identical with that found in primary irritant dermatitis (6).

By combining cytochemical and radioautographic techniques on the same imprints in psoriatic erythroderma, it has been found that the "round" cells which are proliferating in the infiltrate are probably lymphoblasts. Indeed, 3H-labelled cells are negative (or very weakly positive) for Naphthol AS-D acetate esterase(s), as observed in lichen planus (8). The presence of the lymphoblasts still remains unexplained, but it suggests that an immunological process could be involved in the pathogenesis or in the course of psoriatic erythroderma. In this respect, psoriatic erythroderma could be considered as a generalized Köbner phenomenon consecutive to an immunological event developed in patients who are coded for psoriasis.

ACKNOWLEDGEMENTS
We are very grateful to Miss F. D. M. de Cock and Mr N. Vrancken for technical assistance.

REFERENCES

Received September 9, 1974
M. de la Brassinne, M.D.
Department of Dermatology
Hôpital de la Bavière
B-4000 Liège
Belgium

Acta Dermato-Venereologica (Stockholm) 55