Abstract: The binding sites of Concanavalin A (ConA) and pemphigus antibody in the intercellular spaces of the human epidermis have been investigated. Extraction of human skin with phosphate-buffered saline (PBS) and 70% ethanol resulted in complete loss of the binding sites of the pemphigus antibody, whereas the extracted skin still retained its reactivity to ConA. Incubation with more than 0.25 mg/ml of ConA with normal skin caused a reduction in the binding of pemphigus sera. However, incubation of pemphigus sera with normal human skin caused no inhibition of the subsequent binding of fluorescein-labelled ConA. These results indicate that ConA binding sites might be related to, but not identical with those of pemphigus antibody.

Key words: Intercellular substance; Epidermal saccharides; Concanavalin A; Pemphigus antibody

Recently, Nieland (5) demonstrated the presence of surface saccharides in the intercellular spaces of human epidermis by the use of fluorescein-labelled Concanavalin A (ConA), a lectin isolated from the jackbean. ConA has been shown to bind to simple sugars, glycoproteins, and complex polysaccharides containing α-D-glucopyranosyl or α-D-mannopyranosyl groups in a non-reducing terminus (8). Since its staining pattern is identical with that of pemphigus antibody, it was suggested that the binding sites of ConA and pemphigus antibody might be closely related. Hashimoto et al. (4) concluded from reciprocal blocking experiments, competition experiments, and electron microscopic observations, that the binding sites of ConA in the glycocaryx of keratinocytes are identical with those of pemphigus antibody.

We, independently, have found that the pemphigus skin has the capacity to bind with ConA, where antibodies have already been fixed in the intercellular spaces of the epidermis. Based mainly upon this fact, we suggested that the binding sites of ConA and those of pemphigus antibody are not identical (6).

In the present short study, we demonstrate supporting evidence that would seem to confirm our view that the binding sites of ConA might be interrelated with, but not identical with, those of pemphigus antibody.

MATERIALS AND METHODS

Skin and sera. Involved skin of a patient with pemphigus foliaceus (M. H. 36634/74) was taken by the standard biopsy technique, quickly frozen at -20°C and sectioned in a cryostat at 4-6 µm thickness. The sections were used unfixed. As a control, normal skin was obtained and was used in the same manner as above. The sera taken from the same pemphigus patient was used throughout this study. Standard indirect immunofluorescent staining (2) revealed the circulating antibody titre as 1:1024.

Fluorescein-labelled reagents. Fluorescein-labelled ConA (ConA-FITC) was obtained from Cappel Laboratories, Inc., Pa., USA. The details of the conjugated product have been described elsewhere (5). ConA-FITC was diluted 1:40 with phosphate-buffered saline (PBS) at pH 7.4 prior to use. Fluorescein-labelled goat anti-human IgG (Lot. 2201T003A1) was obtained from Hyland Laboratories, Calif., USA and was used at 1:10 dilution with the same buffer.

Removal of pemphigus antigens. Normal skin sections were rinsed in PBS and 70% ethanol respectively overnight. Subsequently, these sections were used as substrate for fluorescein staining, together with untreated normal skin sections. The sections were stained with ConA-FITC and pemphigus antibody and were examined by fluorescence microscopy as described previously (6).

Reciprocal blocking test of ConA and pemphigus antibody. Specific inhibition by ConA of the reaction of pemphigus antibody to the intercellular spaces of the epidermis was tested by preincubation of normal skin sections with serially diluted ConA (Sigma) for 30 min at room temperature, subsequent incubation with pemphigus sera at 1:8 dilution, and again with FITC anti-human IgG.
Inhibition of ConA binding was tested by preincubation of normal human skin sections with serially diluted pemphigus sera and subsequent incubation with ConA-FITC and FITC anti-human IgG.

**RESULTS**

As has previously been reported (6), the involved skin of the pemphigus patient has the capacity to react with ConA-FITC (Fig. 1), irrespective of the concentration of the labelled ConA. The results of the reciprocal blocking test of Con A and pemphigus antibody with the intercellular spaces of the epidermis are shown in Table I. Preincubation of normal skin sections with 0.031 to 0.125 mg/ml of ConA did not influence the subsequent reaction of pemphigus sera at 1:8 dilution. Concentration of 0.25 mg/ml or more up to 2 mg/ml of ConA weakened the subsequent reaction of pemphigus sera but never achieved complete blocking of the pemphigus antibody. On the other hand, previous treatment of normal skin sections with serially diluted pemphigus sera had no effect on the subsequent binding of Con A.

Normal skin extracted with PBS and 70% ethanol respectively overnight caused complete loss of fluorescence when pemphigus sera at 1:16 and 1:32 dilution were applied. Application of ConA-FITC to the extracted skin sections, however, gave positive fluorescence, as shown in Fig. 2.

**DISCUSSION**

Only limited information is available with regard to the physicochemical properties of pemphigus antigens, although these antigens were revealed by absorption studies (1, 3) and passive cutaneous anaphylaxis (7).

In our present study, human skin rinsed in PBS and 70% ethanol caused complete loss of reactivity to pemphigus sera, while ConA-FITC reacted well with these extracted sections. This result indicates that pemphigus antigens are soluble in both PBS and 70% ethanol and the binding sites of ConA in the intercellular spaces still retain their reactivity even after the extraction. Reciprocal blocking experiments suggest that the reduction of the binding of pemphigus antibody occurred only when the doses of ConA

---

*Fig. 1. The involved skin of the patient with pemphigus foliaceus stained with ConA-FITC to show positive fluorescence in the intercellular spaces of the epidermis. × 150.*

*Fig. 2. Application of ConA-FITC to the normal human skin extracted with phosphate-buffered saline to show positive fluorescence. × 190.*

*Acta Dermato-Scand (Stockholm) 35*

---

| Table I. Reciprocal blocking of epidermal intercellular binding of Concanavalin A and pemphigus antibody |
|---------------------------------------------------|--------------------------------------------------|
| Normal skin preincubated with pemphigus sera | Subsequent incubation with ConA-FITC | FITC Anti-human IgG |
| Control | ++ | + |
| 1: 8 | ++ | ++ |
| 1: 32 | ++ | + |

<table>
<thead>
<tr>
<th>Normal skin preincubated with ConA</th>
<th>Subsequent incubation with pemphigus sera (1: 8) and FITC Anti-human IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>+ +</td>
</tr>
<tr>
<td>0.031 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>0.062 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>0.125 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>0.250 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>0.50 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>1.00 mg/ml</td>
<td>++</td>
</tr>
<tr>
<td>2.00 mg/ml</td>
<td>++</td>
</tr>
</tbody>
</table>
were increased. Therefore, it would appear reasonable to conclude that the binding sites of pemphigus antibody are not identical with those of Con A, though there is a possibility that the sites are partially inhibited by the attachment of excess Con A. Thus, our short study offers additional data that Con A binding sites are not identical with pemphigus antibody binding sites (6) and suggests that the main components of the substances reactive with pemphigus antibody are less likely to be surface saccharides reactive with Con A. These data might support the recent physicochemical studies on pemphigus antigens (9) indicating that the pemphigus antigens are protein in nature.

ACKNOWLEDGEMENT
This study was supported by a grant from the Ministry of Health and Welfare of Japan.

REFERENCES

Received November 14, 1974

H. Hatano, M.D.
Department of Dermatology
Keio University School of Medicine
Shinjuku
Tokyo 160
Japan

Acta Dermato-Venereologica (Stockholm) 55