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REVIEW ARTICLE

SIGNIFICANCE
Metformin is a well-known antihyperglycaemic medication, 
but recent studies indicate that its benefits may extend bey-
ond treatment of diabetes mellitus. Metformin is also used in 
the treatment of a variety of conditions, including obesity and 
polycystic ovary syndrome (PCOS), and in cancer prevention. 
Regarding the skin, metformin is a promising therapeutic 
option for acne, hidradenitis suppurativa and rosacea. The 
action of metformin is thought to be due to the drug impro-
ving insulin sensitivity, modulating androgen output, lowering 
oxidative stress, inflammation, and scarring, and improving 
blood vessel health. This review discusses these effects.
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Metformin is a widely used drug for treatment of 
diabetes mellitus, due to its safety and efficacy. In 
addition to its role as an antidiabetic drug, numerous 
beneficial effects of metformin have enabled its use 
in various diseases. Considering the anti-androgenic, 
anti-angiogenic, anti-fibrotic and antioxidant proper-
ties of metformin, it may have the potential to improve 
chronic inflammatory skin diseases. However, further 
evidence is needed to confirm the efficacy of metfor-
min in dermatological conditions, This review focuses 
on exploring the therapeutic targets of metformin in 
acne vulgaris, hidradenitis suppurativa and rosacea, 
by studying their pathogeneses.
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Metformin, a biguanide derivative, is a drug prima-
rily prescribed for diabetes mellitus (DM). Due 

to its safety and efficacy, metformin has been used in 
type 2 DM since the 1950s (1). Recent studies report 
that metformin can be used for diseases other than DM, 
such as cancer, obesity, liver diseases, and cardiovascular 
diseases (2). In dermatology, the use of metformin in 
hirsutism, acne, hidradenitis suppurativa (HS), acanthosis 
nigricans, psoriasis, and skin cancer is showing promi-
sing results (3, 4). However, the underlying mechanism 
is not fully elucidated. Anti-hyperglycaemic effects, 
anti-androgenic effects, antioxidant effects, anti-fibrotic 
effects, anti-proliferative effects, anti-angiogenic effects, 
and pro-autophagic effects have been suggested as pos-
sible mechanisms by which metformin acts in these skin 
disorders (2, 3, 5). This review focuses on the dermato-
logical potential of metformin in acne vulgaris, HS and 
rosacea, based on its mechanism of action.

ANTI-ANDROGENIC EFFECTS OF METFORMIN

Hyperandrogenism in skin diseases
Androgens are well-known hormones that affect many 
organs, including the skin. Testosterone and its more 

potent reduced form, 5α-dihydrotestosterone (DHT), can 
bind to androgen receptors found in sebocytes, dermal 
papilla cells, the outer root sheath of hair follicles, sweat 
glands, endothelial cells and keratinocytes (6). Weak pro-
hormones, such as dehydroepiandrosterone (DHEA) and 
androstenedione, can also be converted to testosterone 
and DHT in sebocytes, sweat glands and dermal papilla 
cells (7). Androgen and androgen receptors are thought 
to be involved in the pathogenesis of a number of skin 
diseases, including androgenetic alopecia, acne vulgaris, 
HS, hirsutism and acanthosis nigricans, by influencing 
hair growth, sebaceous gland proliferation, sebum pro-
duction, and epithelialization (7, 8). 

Acne vulgaris is a disorder of the pilosebaceous unit 
common in adolescents and young adults. Its major patho-
genic factors include follicular hyperproliferation, sebum 
production, Cutibacterium acnes (C. acnes) and local 
inflammation. Hormonal dysregulation also plays a role, 
especially androgens, which increase sebum production. 
Androgens regulate the function of sebaceous glands by 
binding to androgen receptors on sebocytes (9). Insulin-
like growth factor-1 (IGF-1) stimulates androgen receptor 
signalling by reducing nuclear forkhead box-O1 (FoxO1) 
transcriptional activity via activating the phosphoinosi-
tol-3-kinase (PI3K)-Akt pathway (10). Eventually, the 
mammalian target of rapamycin complex 1 (mTORC1) 
signalling pathway is activated to increase lipogenesis by 
upregulating sterol regulatory element-binding proteins 
(SREBPs), which results in hyperseborrhoea in patients 
with acne (11). C. acnes, which favours sebum-rich con-
dition is also involved in acne pathogenesis (12). IGF-1 
triggers inflammatory cytokine responses in acne by 
upregulating Toll-like receptor (TLR) 2/4 expression in 
sebocytes (13). In this regard, acne is exacerbated under 
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conditions in which IGF-1 is elevated, such as a high 
glycaemic load diet, milk consumption and polycystic 
ovarian syndrome (PCOS) (14).

HS is a chronic inflammatory disorder of hair follicles 
and is characterized by deep-seated nodules, abscesses, 
fistulae, sinus tracts, and hypertrophic scars in inter-
triginous and anogenital regions of the body (15). Its 
comorbidities and risk factors include smoking, obesity, 
metabolic syndrome, cardiovascular disease, diabetes and 
inflammatory bowel disease. Although the pathogenesis 
of HS is yet to be fully elucidated, follicular hyperkerato-
sis, ruptured hair follicles, and subsequent inflammation 
of the pilosebaceous-apocrine unit play a key role. Similar 
to other inflammatory skin diseases, immune dysregula-
tion plays an important role in the process. Androgens 
have been implicated in HS, since premenstrual exacerba-
tion is often seen in female patients (16). Some patients 
with HS carry high concentrations of total testosterone 
and free androgen index scores (17), but the majority of 
patients have normal serum androgen levels (16, 18). 
Thus, it is speculated that the peripheral conversion of 
androgens is increased in patients with HS. However, a 
study that investigated androgen metabolism in apocrine 
glands found that the activity of the 5α-reductase enzyme 
catalysing DHT synthesis from testosterone was similar 
in patients with HS and healthy controls (19). In spite of 
normal androgen profiles in patients with HS, improve-
ment in HS has been reported following antiandrogen 
treatments, including spironolactone, finasteride, and cy-
proterone acetate (20–24). As in acne vulgaris, mTORC1 
was increased in both the lesional and non-lesional skin 
of patients compared with healthy controls (25). Consi-
dering that patients with HS have a high prevalence of 
obesity and metabolic diseases which are characterized 
by hyperandrogenism, insulin resistance, and mTORC1 
upregulation, androgen may play a role in the pathoge-
nesis of HS. Further studies are needed to investigate the 
detailed underlying mechanisms.

Potential anti-androgenic targets of metformin
Metformin activates adenosine monophosphate-activated 
protein kinase (AMPK) to increase the expression of 
glucose transporter 4 (GLUT4) and the translocation 
of GLUT4 to the plasma membrane (26). This pathway 
facilitates peripheral glucose utilization, enhances 
insulin sensitivity, and reduces IGF-1 levels (4, 26). 
Decreased IGF-1 levels increase FoxO1 availability 
and, eventually, suppress androgen receptor signalling. 
Metformin downregulates mTORC1, which is activated 
by IGF-1 in patients with acne vulgaris and HS, in an 
AMPK-independent manner (27). In particular, the anti-
androgenic effects of metformin have been reported in 
patients with PCOS. Metformin decreases free-bioactive 
IGF-1 by increasing insulin-like growth factor-binding 
protein (IGFBP)-1 in patients with PCOS (28). Metfor-
min also suppresses the TLR4-associated nuclear factor 

kappa B (NF-κB) signalling pathway, which is positively 
regulated by hyperandrogenism (29). It also represses 
testosterone-induced androgen receptor expression in 
cells (30). The anti-androgenic effects of metformin sug-
gest its effectiveness in diseases associated with hyper-
androgenism and insulin resistance, including PCOS, 
HS, acne vulgaris, hirsutism and obesity. 

ANTI-ANGIOGENIC EFFECTS OF METFORMIN

Angiogenesis in skin diseases
Angiogenesis is the formation of new blood vessels from 
pre-existing blood vessels. It is essential for physiological 
repair, including wound healing, by increasing perfusion, 
nutrient supply, and the elimination of waste products 
(31, 32). However, excessive angiogenesis may play a 
role in various cutaneous diseases, including psoriasis, 
atopic dermatitis, rosacea, haemangiomas, melanoma, 
and non-melanoma skin cancer (32–34). Angiogenesis 
is triggered by the release of angiogenic factors, such as 
vascular endothelial growth factors (VEGFs), fibroblast 
growth factors (FGFs), angiopoietins (Ang1 and Ang2), 
platelet-derived growth factor (PDGF), and transforming 
growth factor-β (TGF-β), by hypoxic tissue (31–36). 
Furthermore, the process is facilitated by the degrada-
tion of the basement membrane and extracellular matrix 
(ECM) by matrix metalloproteinases (MMPs). MMPs, 
especially MMP-9, promote angiogenesis by activating 
VEGF (35, 37, 38). Since immune cells are a major source 
of these angiogenic factors, angiogenesis may accom-
pany chronic inflammatory skin diseases. Specifically, 
neutrophils produce VEGF-A and MMPs. Mast cells and 
macrophages release VEGF-A and VEGF-B and T-helper 
type 17 (TH17) cells produce interleukin (IL) 17, which 
enhances angiogenesis by increasing VEGF-A (39). 

Rosacea is a chronic inflammatory disease that predo-
minantly affects the central face. Although its aetiology 
remains elusive, the inflammatory pathway includes the 
dysregulation of innate and adaptive immune systems 
and neurovascular dysregulation. Triggering factors, 
such as heat, ultraviolet (UV) radiation, emotional stress, 
micro organisms, alcohol and other irritants, may initiate 
the inflammatory pathway via a number of mediators. 
TLR2 recognizes several trigger factors and is upregula-
ted in patients with rosacea. TLR2 induces the activation 
of cathelicidin LL-37 via kallikrein 5 (KLK5), leading to 
erythema, telangiectasia and angiogenesis by releasing 
inflammatory cytokines, chemokines, proteases and 
angiogenic factors (40, 41). TLR2 also activates the NLR 
family pyrin domain-containing 3 (NLRP3) inflamma-
some, which induces IL-1β and tumour necrosis factor 
(TNF), mediating inflammation and prostaglandin E2 
synthesis (42). Protease-activated receptor 2 (PAR2), 
expressed by keratinocytes, endothelial cells and innate 
and adaptive immune cells, acts as a key mediator of 
inflammation in rosacea. PAR2 also interacts with TLR2, 



A
ct

aD
V

A
ct

aD
V

A
d
v
a
n

c
e
s 

in
 d

e
rm

a
to

lo
g
y
 a

n
d
 v

e
n

e
re

o
lo

g
y

A
c
ta

 D
e
rm

a
to

-V
e
n

e
re

o
lo

g
ic

a

3/10  M. Cho et al. “Metformin in acne, hidradenitis suppurativa and rosacea treatment”

Acta Derm Venereol 2023

and KLK5 further activates PAR2 signalling pathways 
(43, 44). Following the activation of TLR2, PAR2 and 
the NLRP3 inflammasome, T-helper type 1 (TH1) cells, 
TH17 cells, macrophages and mast cells release angi-
ogenic factors, such as VEGF, TGF-β, IL-17 and MMPs, 
in patients with rosacea (34, 44, 45). 

The key proinflammatory cytokines of HS include 
TNF-α, IL-1β, and IL-17 (15, 46). TNF-α released by 
keratinocytes and activated dendritic cells induces 
defective insulin signalling by activating adipocytes 
and muscle cells (47, 48). It also increases TH17 cells, 
resulting in elevations of IL-17 levels. IL-1β combined 
with TNF-α activates MMP2 and MMP9 (46). IL-17 
induces the expression of the NLRP3 inflammasome in 
neutrophils and macrophages, further enhancing inflam-
matory responses by increasing TNF-α, IL-1β, caspases 
and MMPs (15, 46). The role of angiogenesis in HS 
has yet to be elucidated, but activation of the NLRP3 
inflammasome, MMP 9 overexpression, and elevated 
levels of TNF-α, IL-1β and IL-17 are known to act as 
pro-angiogenetic factors in other inflammatory skin 
diseases, such as rosacea. IL-1α, one of the keratinocyte-
derived proinflammatory mediators in HS, may promote 
angiogenesis via the VEGFR-2 pathway, as well as 
comedogenesis in the follicular infundibulum (49, 50). 

In acne vulgaris, follicular hyperproliferation and 
comedogenesis are induced by IL-1α, which is a potent 
angiogenic factor. Pattern recognition receptors, such 
as TLRs, recognize lipase, hyaluronidase and proteases 
released by C. acnes (51). In particular, the expression 
of TLR2 and TLR4 is increased in the epidermis of 
acne lesions, resulting in the production of IL-1, TNF-α, 
IL-8, prostaglandins, leukotrienes and MMP9 (52). In 
addition, C. acnes promotes the secretion of IL-1β and 
IL-18 through the inflammasome pathway via NLRP3 
and caspase-1 (53). TH1 and TH17 cells in acne vulga-
ris also secrete proinflammatory cytokines, including 
interferon-γ, IL-1β TGF-β and IL-17. As such, inflam-
matory pathways shared with rosacea and HS contribute 
to angiogenesis in acne vulgaris. 

Potential anti-angiogenic targets of metformin 
Several attempts have been made to utilize metformin 
based on its anti-angiogenic effects. For example, re-
cent in vivo studies of cancers showed that metformin 
inhibits angiogenesis by downregulating PDGF-B, 
hypoxia-inducible factor-1α (HIF-1α)-induced VEGF-A, 
IGFBP-2, IGFBP-3, PDGF-AA, MMP9, endostatin and 
angiogenin (54–56). PCOS is characterized by abnormal 
angiogenesis as well as insulin resistance. Metformin 
reduces angiogenesis in PCOS by raising the level of 
anti-angiogenic thrombospondin-1 (57). Several derma-
tological studies have investigated the therapeutic role 
of metformin in hirsutism, HS, acne in PCOS, psoriasis, 
acanthosis nigricans and skin cancers. Although its anti-
angiogenic effects on rosacea, HS, and acne vulgaris 

remain unclear, the underlying mechanisms of action are 
expected to be similar to those in other diseases. 

The specific mechanisms of the anti-angiogenic ef-
fects of metformin include the inhibition of VEGF 
expression and decreased microvessel density via the 
mTORC1 signalling pathway (58–60). Dysregulation 
of the mTORC1 signalling pathway, which regulates 
cellular growth, metabolism, and survival, may lead to 
uncontrolled proliferation and inflammation (61). The 
signalling pathway is activated in several inflammatory 
skin diseases, including atopic dermatitis, psoriasis, 
pemphigus, rosacea, HS and acne vulgaris (25, 61, 62). 
mTORC1 was shown to be activated in the endothelial 
cells of lesional skin derived from rosacea patients and 
an LL-37-induced rosacea-like mouse model (62). LL-
37 activates mTORC1 signalling by binding to TLR2, 
which, in turn, increases the cleavage of cathelicidin to 
LL-37, in a positive feedback loop (63). The inhibition of 
mTORC1 signalling by rapamycin significantly reduced 
LL-37-induced vasculature in a mouse model (62). Other 
studies have reported that mTORC1 expression was 
increased in both the lesional and non-lesional skin of 
patients with HS and acne compared with normal controls 
(11, 25). Although the specific mechanism needs further 
investigation, considering that mTORC1 promotes TH17 
cell differentiation (64), it may induce angiogenesis in 
HS and acne vulgaris in an IL-17-dependent manner. 

In addition to the mTORC1 signalling pathway, met-
formin may exert its anti-angiogenic effects through other 
pathways. For instance, a mouse model of carotid artery 
atherosclerotic plaques showed that metformin was di-
rectly bound to MMP9, resulting in its degradation (65). 
MMP9 was reduced in a metformin-treated rosacea-like 
mouse model, and the possible binding of metformin and 
MMP9 was identified in molecular docking studies (66). 
Metformin also inhibited TNF-α, IL-1β and IL-17A-
induced inflammatory responses by blocking the NLRP3 
inflammasome in vitro (67). Since the overexpression of 
MMP9 and the activation of NLRP3 inflammasome are 
common in rosacea, HS and acne vulgaris, metformin 
also has the potential to reduce angiogenesis in those 
diseases. While further research is needed, it would be 
worth applying metformin to acne, rosacea, and HS pa-
tients as it targets angiogenic factors, such as mTORC1, 
VEGF, TLR2, IL-1, IL-17, NLRP3, and MMP9.

ANTI-FIBROTIC EFFECTS OF METFORMIN

Fibrosis in skin diseases
Fibrosis is a physiological response to injury and irrita-
tion, with the excessive deposition of connective tissue 
components in an organ (68). Excessive cutaneous 
fibrosis can lead to pathological conditions, including 
hypertrophic scars, keloids, chronic cutaneous graft- 
versus-host disease, and scleroderma (69). Over-deposition 
of ECM is attributed to abnormal ECM degradation and 
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synthesis under chronic inflammatory conditions, such 
as hypertrophic scars, keloids, and rhinophyma seen in 
acne vulgaris, HS and rosacea.

ECM synthesis by activated fibroblasts and myofibro-
blasts is driven mainly by the TGF-β signalling pathway 
(69). In addition to TGF-β, oxidative stress, mechanical 
tension, and other profibrotic factors, such as connective 
tissue growth factor (CTGF), PDGF, FGF, IL-4, IL-5, IL-
6, IL-13 and IL-21 promote ECM production (69, 70). 
TGF-β1 binds to its receptor and then phosphorylates 
the transcription factors Smad2/3, resulting in profibrotic 
gene expression (71).

Potential anti-fibrotic targets of metformin 
Metformin decreases fibrosis by inhibiting TGF-β1 
production, suppressing TGF-β from binding to its 
receptor, and blocking the phosphorylation of Smad3 
(72–74). AMPK activation by metformin can inhibit the 
phosphorylation and nuclear translocation of Smad3 and 
decrease Smad3-mediated transcription (68). AMPK also 
induces the proteasomal degradation of P300, a coacti-
vator of Smad2/3, which results in the reduced acetyla-
tion and transcription of Smad3 (75). The activation of 
AMPK also decreases TGF-β1-induced myofibroblast 
differentiation (76). Furthermore, the anti-fibrotic effects 
of metformin are mediated by the inhibition of HIF-1α-
dependent fibroblast activation in hypoxic conditions and 
the downregulation of the PI3K-FoxO3 pathway (77, 78). 

Metformin has been investigated as a potential treat-
ment option for keloids based on its anti-fibrotic mole-
cular mechanisms. Metformin decreased ECM compo-
nents, such as collagen types I, Ⅲ, fibronectin, and elastin 
in keloid spheroids, an in vitro three-dimensional (3-D) 
keloid model (79). In another study, metformin inhibited 
the HIF-1α-dependent epithelial-to-mesenchymal transi-
tion of keloid fibroblasts (80). Efforts have also been 
made to generate a metformin-releasing multilayered 
3-D scaffold to alleviate fibrosis and accelerate wound 
healing (81, 82). Further studies are needed to investigate 
the anti-fibrotic effects of metformin in acne vulgaris, HS 
and rosacea, which have shared pathways in fibrosis and 
are well-known to cause scars.

ANTIOXIDANT EFFECTS OF METFORMIN

Oxidative stress in skin diseases
Oxidative stress, a consequence of reactive oxygen spe-
cies (ROS) production, plays a key role in the pathoge-
nesis of various skin diseases and skin ageing. ROS are 
produced by various skin cells, including keratinocytes, 
in response to stimuli such as inflammatory cytokines, 
UV radiation, air pollutants, drugs, foods, and cosmetics 
(83, 84). They damage DNA, lipid membranes, proteins 
and other macromolecules inside cells. ROS also trigger 
signalling pathways related to activator protein 1 (AP-1), 

mitogen-activated protein kinase (MAPK), NF-κB and 
Akt (84). Antioxidants present in skin tissue inhibit this 
oxidative stress. Endogenous antioxidants include super-
oxide dismutase (SOD), glutathione peroxidase (GPX), 
glutathione S-transferase (GST), catalase, vitamin C, 
vitamin A, vitamin E, sulphydryl groups, glutathione, 
melatonin, carotenoids, flavonoids, coenzyme Q10 and 
selenium (83, 85).

However, in several studies, SOD and GPX activities 
were reduced in patients with acne compared with controls 
(86, 87). Linoleic acid suppresses the generation of ROS, 
but its level was found to be lower in patients with acne 
(88). Serum vitamin A and E levels were also lower in 
patients with acne (89, 90). Levels of ischaemia-modified 
albumin (IMA), which is formed under oxidative stress, 
were increased both in acne vulgaris and HS, and increases 
in IMA levels were proportional to disease severity (91, 
92). Thiol, the antioxidant containing a sulphydryl group, 
is converted to disulphide under oxidative stress. The pro-
portion of the disulphide form was higher in patients with 
HS compared with control groups (92), which suggests the 
possibility of higher oxidative stress in such patients. In 
rosacea, oxidative stress levels, represented by ferritin and 
plasma malondialdehyde (MDA) levels, were increased, 
whereas the antioxidant potential was decreased (93, 
94). LL-37, which is a key factor in the pathogenesis of 
rosacea, stimulates the generation of ROS by activating 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase and intracellular Ca2+ mobilization (95).

Potential antioxidant targets of metformin
As AMPK is a key regulator of ROS, metformin exhibits 
antioxidant effects by activating AMPK (96). In response 
to oxidative stress, AMPK facilitates antioxidant produc-
tion by activating FoxO and inhibiting mTOR signalling 
(96). Metformin also decreases the production of ROS 
by inhibiting mitochondrial complex I (97). It may po-
tentiate the antioxidant effect via enhanced autophagy, 
which allows cellular adaptation to oxidative stress (98, 
99). Furthermore, metformin reduces MDA levels and 
upregulates the expression of antioxidant enzymes, such 
as GST and SOD (100–102). In this regard, metformin 
has potential therapeutic benefits for patients with acne 
vulgaris, HS and rosacea, conditions that are associated 
with increased oxidative stress.

CLINICAL STUDIES OF METFORMIN INVOLVING 
ACNE VULGARIS, HIDRADENITIS SUPPURATIVA 
AND ROSACEA

Acne vulgaris
Studies investigating metformin as a treatment option 
for acne have mostly been conducted in patients with 
PCOS. In a systematic review and meta-analysis (103) 
of 27 randomized controlled trials, 5 non-randomized 
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controlled trials, and 19 open-label studies involving 
patients with PCOS, metformin adjuvant therapy raised 
the acne scores more than the regimen without metfor-
min (standardized mean difference (SMD) –0.256; 95% 
confidence interval (95% CI) –0.439 to –0.074). Acne 
scores decreased significantly after metformin treatment 
(SMD –0.712; 95% CI –0.949 to –0.476). However, oral 
contraceptive pills were superior to metformin in trea-
ting acne vulgaris in patients with PCOS, according to a 
Cochrane review (104), which compared the effective-
ness and safety of metformin vs oral contraceptive pills 
in women with PCOS.

Few clinical studies have investigated the therapeutic 
role of metformin in patients with acne without PCOS 
(105–107). A randomized open-label study (105) in-
vestigated the effectiveness of metformin as adjuvant 
therapy for moderate-to-severe facial acne in patients, 
regardless of sex, body mass index (BMI) or insulin 
resistance. Eighty-four patients were treated with either 
oral tetracycline at 250 mg twice daily combined with 
2.5% topical benzoyl peroxide with or without metfor-
min at 850 mg daily. The clinical severity of acne was 

assessed at weeks 0, 6 and 12, based on the total number 
of acne lesions, Investigator’s Global Assessment (IGA) 
scores, and Cardiff Acne Disability Index (CADI) scores. 
Patients who received metformin had a higher treatment 
success rate (p = 0.04), a greater mean percentage reduc-
tion from baseline in total lesion counts (p = 0.278), and 
a greater mean reduction in CADI scores (p = 0.451) 
than those without metformin. The study also revealed 
that metformin adjuvant therapy significantly improved 
the clinical severity of acne, irrespective of BMI status. 

Another randomized controlled study (106) involved 
20 male patients with an altered metabolic profile (de-
fined as impaired fasting glucose, increased levels of 
total and low-density lipoprotein cholesterol, decreased 
levels of high-density lipoprotein cholesterol, and waist 
circumference and BMI at the upper limits of normal). 
An experimental group of 10 patients who were treated 
with metformin and a hypocaloric diet for 6 months had 
statistically significant improvements in acne compared 
with the control group (p < 0.05).

A recent observational study (107) assessed the ef-
fectiveness of metformin alone in acne vulgaris. Thirty 

Fig. 1. Schematic representation of the possible therapeutic targets of metformin in acne vulgaris, according to the pathways identified 
in this review. PCOS: polycystic ovary syndrome; IGF-1: insulin-like growth factor-1; IGFBP-1: insulin-like growth factor-binding protein-1; PI3K: 
phosphoinositol-3-kinase; FoxO1: forkhead box-O1; mTORC: mammalian target of rapamycin complex; SREBP: sterol regulatory element binding protein; 
C. acnes: Cutibacterium acnes; TLR: Toll-like receptor; NF-κB: nuclear factor kappa B; NLRP3: NLR family pyrin domain containing 3; IL: interleukin; 
TH0: naïve T helper cell; TH17: T helper type 17 cell; VEGF: vascular endothelial growth factor; MMP: matrix metalloproteinase; TNF-α: tumour necrosis 
factor-α; TGF-β: transforming growth factor-β; HIF-1α: hypoxia-inducible factor-1α; AMPK: adenosine monophosphate-activated protein kinase; ROS: 
reactive oxygen species; SOD: superoxide dismutase; GST: glutathione S-transferase.
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patients were treated with metformin at 1,000 mg daily 
for 3 months without any other topical or systemic th-
erapy for acne. Metformin monotherapy significantly 
improved the clinical severity of acne based on global 
acne grading scores (p < 0.001). 

Hidradenitis suppurativa
In 1 prospective cohort study (108), 25 patients with HS 
previously refractory to standard therapies were treated 
with metformin over a period of 24 weeks. The clinical 
severity of HS was assessed at weeks 0, 12 and 24, based 
on both Sartorius and Dermatology Life Quality Index 
(DLQI) scores. The results showed clinical improvement 
in 72% (n = 18/25), with a mean reduction in Sartorius 
scores of 12.7. The DLQI score also improved in 76% 
of the patients (n = 19/25), with a mean reduction of 7.6.

In a retrospective analysis of 53 patients with HS treated 
with metformin (109), a subjective clinical response was 
observed in 68% (n = 36/53), of which 19% (n = 7/36) sho-
wed a complete response (no active HS lesions reviewed 
by a dermatologist) to metformin monotherapy. The mean 

treatment duration was 11.3 months, and the mean dose 
was 1.5 g/day. The analysis showed no correlation between 
insulin resistance and the clinical response to metformin.

Another retrospective analysis was conducted in 16 pae-
diatric patients with HS treated with metformin as adjunc-
tive therapy (110). Clinical improvement was observed in 
31% of the patients (n = 5/16), with 38% (n = 6/16) lost to 
follow-up. Two patients discontinued metformin due to 
gastrointestinal distress and mood changes.

Rosacea
Despite studies at the cellular and animal levels, no 
clinical studies have investigated the effect of metformin 
on rosacea in humans.

Conclusion
Hyperandrogenism, angiogenesis, fibrosis and oxida-
tive stress contribute to the outbreak, aggravation and 
sequelae of acne vulgaris, HS and rosacea. Metformin, 
a widely used hypoglycaemic drug with proven safety, 

Fig. 2. Schematic representation of the possible therapeutic targets of metformin in hidradenitis suppurativa, according to the pathways 
identified in this review. IGF-1: insulin-like growth factor-1; IGFBP-1: insulin-like growth factor-binding protein-1; mTORC: mammalian target of 
rapamycin complex; NLRP3: NLR family pyrin domain containing 3; IL: interleukin; TH0: naïve T helper cell; TH17: T helper type 17 cell; VEGF: vascular 
endothelial growth factor; MMP: matrix metalloproteinase; TNF-α: tumour necrosis factor-α; TGF-β: transforming growth factor-β; HIF-1α: hypoxia-
inducible factor-1α; AMPK: adenosine monophosphate-activated protein kinase; ROS: reactive oxygen species; SOD: superoxide dismutase; GST: 
glutathione S-transferase.
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has multiple beneficial effects besides lowering serum 
glucose. Based on its anti-androgenic, anti-angiogenic, 
anti-fibrotic and antioxidant effects, metformin repre-
sents a novel therapeutic candidate for acne vulgaris, 
HS and rosacea. The possible therapeutic targets of 
metformin in each disease are summarized in Figs 1–3. 
Further laboratory and clinical investigations are required 
to elucidate the therapeutic mechanisms and clinical ef-
ficacy of metformin in dermatological diseases.
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