Supplementary material has been published as submitted. It has not been copyedited, typeset or
checked for scientific content by Acta Dermato-Venereologica

APPENDIX S1 - R source code for the CNN model definition and training.

CNN, convolutional neural network.

target size <- c (600, 600)

cat list <- c¢("In situ", "Invasiv")

DATA AUMENTATION FOR TRAINING SET

train data gen AUG <- image data generator (
rescale = 1/255,
rotation range = 360,
width shift range = 0.2,
height shift range = 0.2,
shear range = 0.2,
zoom range = 0.2,
horizontal flip = TRUE,
vertical flip = TRUE,

fill mode = "nearest",

validation data gen <- image data generator (

rescale = 1/255

DEFINE BATCH SIZES FOR TRAINING AND VALIDATION SET

train image array gen AUG <- flow images from directory(train image files path,
train data gen AUG,
target size = target size,
classes = cat list,
batch size = 10,

class mode = "binary")

validation image array gen <- flow images from directory(validation image files path,
validation data gen,
target size = target size,
classes = cat list,
batch size = 10,

class mode = "binary")

####4 4444444 MODEL DEFINITION ##########4#

DERM INPUT <- layer input (shape c (600,

OUTPUT FROM DERM CONV <- DERM INPUT %>%

layer conv_2d(filters 16, kernel siz

layer max pooling 2d(pool size

c(2,

layer conv_2d(filters 32, kernel siz

layer max pooling 2d(pool size

c(2,

layer conv_2d(filters 64, kernel siz

layer max pooling 2d(pool size c(2,

layer conv 2d(filters

128, kernel si

layer max pooling 2d(pool size c(2,

layer conv 2d(filters

128, kernel si

layer max pooling 2d(pool size = c(2,

layer conv_2d(filters 128, kernel si

layer max pooling 2d(pool size

c(2,

##

600, 3), name = "DERM INPUT")
e = c(3, 3), activation = "relu")
2)) %>%
e = c(3, 3), activation = "relu")
2)) %>%
e = c(3, 3), activation = "relu")
2)) %>%
ze = c(3, 3), activation = "relu")
2)) %>%
ze = c(3, 3), activation = "relu")
2)) %>%
ze = c(3, 3), activation = "relu")
2), name="LASTMAXPOOL DERM") %>%

layer flatten (name="FLATTENED FROM DERM CONV")

MAIN OUTPUT <-

OUTPUT FROM DERM CONV $>%

layer dropout(rate = 0.5) %>%
layer dense(units = 128, activation =
layer dense(units = 1, activation = "s

o o
5>%

"relu")

igmoid", name="MAIN OUTPUT")

oo

>%

o
e

>%

o o
5>%

model <- keras model (

inputs = c(DERM INPUT),

outputs c (MAIN OUTPUT)

#4444 #4444 COMPILE THE MODEL ######## #4444

model %$>% compile (
loss = "binary crossentropy",
optimizer = optimizer rmsprop(lr = 5e-5),

metrics = c("acc", tfSkerasSmetricsS$SAUC (name="auc"))

Hh##4444H #4444 TRAIN THE MODEL ##########444

history <- model %>% fit generator(
train image array gen AUG,
steps per epoch = 129,
epochs = 60,
validation data = validation image array gen,
validation steps = 30,
class weight = list("0"=1, "1"=(683/554)),
callbacks = list(
callback csv logger (filename=paste0 (logspath, modelnamebest, ".txt"),
append=TRUE, separator="\t"),
callback model checkpoint (filepath=pasteO (logspath, modelnamebest),
save best only=TRUE,
monitor="val auc",

mode="max")

APPENDIX S2 - Model summary for the selected CNN model used in this investigation.

CNN, convolutional neural network.

Layer (type) Output Shape Param #
DERM INPUT (InputLayer) [(None, 600, 600, 3)] 0
conv2d 6 (Conv2D) (None, 598, 598, 16) 448
max pooling2d 5 (MaxPooling2D) (None, 299, 299, 16) 0
conv2d 7 (Conv2D) (None, 297, 297, 32) 4640
max pooling2d 6 (MaxPooling2D) (None, 148, 148, 32) 0
conv2d 8 (Conv2D) (None, 146, 146, 064) 18496
max pooling2d 7 (MaxPooling2D) (None, 73, 73, 64) 0
conv2d 9 (Conv2D) (None, 71, 71, 128) 73856
max pooling2d 8 (MaxPooling2D) (None, 35, 35, 128) 0
conv2d 10 (Conv2D) (None, 33, 33, 128) 147584
max pooling2d 9 (MaxPooling2D) (None, 16, 16, 128) 0
conv2d 11 (Conv2D) (None, 14, 14, 128) 147584
LASTMAXPOOL DERM (MaxPooling2D) (None, 7, 7, 128) 0
FLATTENED FROM DERM CONV (Flatten) (None, 6272) 0
dropout 1 (Dropout) (None, 6272) 0
dense 1 (Dense) (None, 128) 802944
MAIN OUTPUT (Dense) (None, 1) 129

Total params: 1,195,681
Trainable params: 1,195,681

Non-trainable params: O

APPENDIX S3

Technical information regarding program used and image processing.

The Keras library (version 2.3.1) using the Tensorflow backend (version 1.14.0) was used
running on Python version 3.6.9. Model construction was performed using R version 3.5.3
(The R Foundation for Statistical Computing, Vienna, Austria) and the R-package Keras was
used to call Python and its above libra- ries. XnView version 2.20 was used to scale and crop
all images to quadratic shape and a resolution of 600x600 pixels (preserving the aspect ratio).
All images were converted from JPEG to PNG format. A 24-bit colour depth was used (3
RGB channels with 8 bits in each channel). The computer running the training used the GPU
version on the Keras/Tensorflow routines. The graphics card was a Nvidia Geforce GTX
1070 with 8 GB GPU memory using CUDA version 10.0 and cudnn version 7.6.3.30. The
processor was an Intel Core 15-2400 @ 3.10 GHz with 24 GB RAM.

