The Perivascular Cell Populations in Human Skin after Topical Application of Leukotriene B₄

R. K. WINKELMANN,¹ R. CAMP,² J. S. C. ENGLISH² and M. W. GREAVES²

¹Department of Dermatology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA, and ²St. John's Hospital for Diseases of the Skin, London, England

Fifteen timed biopsies of human skin were performed after application of 100 nanograms of leukotriene B₄ in a Finnchamber® for six hours. The number of inflammatory cells were counted per high power perivascular field and compared to three control biopsies. At 24 hours a peak of neutrophiles was observed and subsequently lymphocytes predominated. Eosinophils were never prominent. This pattern of successive cell populations has been described in inflammatory and whealing skin disease. (Received November 25, 1985.)

METHODS

The biopsy slides available from the previous study on application of LTB₄ to normal human skin were reviewed. One hundred ng of LTB₄ had been applied to the small area occluded by a Finnchamber® for 6 hours on the skin of the flexor forearm. Hematoxylin and Eosin and periodic acid Schiff stains were used for each biopsy.

The perivascular areas in the subpapillary zone (perivenular) were isolated in turn by high powered field (x 100). Ten consecutive high powered fields were surveyed and all the cells in each field were counted. The number of biopsies at each time period, and the mean and standard deviation of the cell counts of lymphocytes, neutrophils, and eosinophils is summarized in Table I.

RESULTS

The cell counts show a peak of neutrophils in and about the subpapillary venules at the same time as the intraepidermal neutrophil abscesses are at a maximum (Fig. 1). Later, the numbers of neutrophils decrease to low values by 48 hours and the lymphocyte perivascular population rises (Fig. 2). This time sequence is schematically shown in Fig. 3.

COMMENT

The sequence of inflammatory cells in LTB₄ treated skin from neutrophils to lymphocytes is an expected transition in acute to chronic inflammation. However, the delay in appear-
ance of the neutrophils is remarkable. Perivascular neutrophils were not observed until 12 hours, and for a potent chemotactic leukocyte chemotactic agent such as leukotriene B₄, a definite delay in absorption of the material must be postulated. An alternative explanation is that LTB₄ produces a biochemical or pharmacologic reaction which over time results in acute inflammation. Dahinden et al. (4) postulated that metabolic products of LTB₄ were active agents and mediators.

We were interested in the marked rise in the perivascular lymphocytes after the acute neutrophilic perivascular inflammation had disappeared. Increased numbers of perivenular lymphocytes were maintained up to 7 days. Since prostaglandins may affect lymphocyte activity, their effect might be an explanation. After such a long period, it might also be appropriate to suggest that the lymphocytes are a response to a chronic vascular injury as in a chronic urticaria. Study of the lymphocyte subsets might be of importance.

Perivascular venular neutrophilia has been observed in dermographism (5, 6) and nicotinate dermographism (7). We have not studied the LTB₄ effect on skin by experimental pressure to demonstrate if the neutrophilia is also accompanied by traumatic vasopermeability, but we might anticipate that both LTB₄ and 12 HETE, which cause vascular

Table 1. Cell populations and LTB₄

<table>
<thead>
<tr>
<th>Time</th>
<th>No. of biopsies</th>
<th>Lymphocytes</th>
<th>Neutrophils</th>
<th>Eosinophils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3</td>
<td>13.9±5.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 hours</td>
<td>2</td>
<td>10.9±3.3</td>
<td>0.1±0.3</td>
<td>0</td>
</tr>
<tr>
<td>12 hours</td>
<td>2</td>
<td>7.4±3.7</td>
<td>3.5±2.5</td>
<td>0.9±1.0</td>
</tr>
<tr>
<td>24 hours</td>
<td>5</td>
<td>9.4±3.8</td>
<td>21.6±7.4</td>
<td>0.9±1.3</td>
</tr>
<tr>
<td>48 hours</td>
<td>2</td>
<td>52.7±18.4</td>
<td>5.5±5.4</td>
<td>1.0±1.5</td>
</tr>
<tr>
<td>72 hours</td>
<td>2</td>
<td>37.2±12.0</td>
<td>3.5±2.8</td>
<td>0.1±0.3</td>
</tr>
<tr>
<td>96 hours</td>
<td>1</td>
<td>57.1±21.5</td>
<td>1.1±1.6</td>
<td>0</td>
</tr>
<tr>
<td>168 hours</td>
<td>1</td>
<td>55.1±10.1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. A skin biopsy 24 hours after LTB₄ application showing vascular and perivascular neutrophils and round cells. H&E. ×460.
Fig. 2. A skin biopsy at 48 hours showing perivascular round cells (lymphocytes). H&E, x460.

and epidermal neutrophilia may both condition a dermographic state in human skin. A prospective study is needed to demonstrate if LTB₄ vessel neutrophilia is associated with
dermographism.

The transition from neutrophils to lymphocytes has been observed in dermographism (6) and postulated in cold urticaria (8). We have observed this same transition with LTB₄, but delayed by 24 hours. The number of late biopsies makes statistical study impossible and again a prospective study of multiple subjects is needed including both early and late biopsies to document and quantitate the observations of this report. Injection of leukotriene might more closely simulate the early inflammation of whealing states and the reaction might occur much earlier. Another difference from the usual immunologic urticaria is the absence of eosinophils in the studied tissue. Pressure urticaria and some cases of chronic urticaria are marked by significant eosinophilia.

We believe that the neutrophil vascular inflammation is an important feature of the leukotriene B₄ reaction in the skin. Because this reaction occurs in many forms in inflammatory and urticarial disease, it will be important to study these skin diseases for the presence of leukotrienes and lipoxygenase products.

Fig. 3. Schematic representation of mean and standard deviation of cell populations of timed biopsies after application of LTB₄.
ACKNOWLEDGEMENTS

This study was supported in part by the Kieckhefer Foundation, The Eleanor Naylor Dana Charitable Trust, and the Revlon Research Center.

REFERENCES

5. Gilchrist TC. Some experimental observations on urticaria factitia (dermographism) and urticaria chronica. J Cut Dis 1908; 26: 122-123.

The Epidermal Langerhans' Cell Population in Psoriasis during Topical Coal Tar Therapy

LINDA M. PUTTICK, G. D. JOHNSON, and LÉONIE WALKER

Department of Dermatology, The General Hospital and University Department of Immunology, Birmingham, England

We have studied the effect on the Langerhans' cell (LC) population of topical 3% coal tar therapy. Biopsies were taken from psoriatic plaques and from controls with no skin disease before and after the application of 3% coal tar for one week; LC were identified by immunofluorescence using monoclonal antibody. LC counts expressed per unit epidermal surface length were similar in untreated psoriasis plaques and in normal skin. Differences in the LC population in paired biopsies from both patients and controls showed considerable variation following coal tar treatment but no consistent effect could be demonstrated. (Received January 8, 1986.)

L. Puttick, Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, England.

The Langerhans' cell (LC) is a bone marrow derived dendritic cell found almost exclusively in the epidermis and responsible for antigen presentation. There are conflicting views on the nature of immune involvement in the pathology of psoriasis (1). A marked reduction in the LC population has been reported following PUVA (2) therapy used in the treatment of psoriasis. It is therefore of interest to determine whether other forms of treatment for psoriasis have this effect.

We have compared the LC population in untreated psoriasis plaques with that in normal skin and after initiation of healing with topical coal tar. This treatment produces a