Increase of Mast Cells in the Alopecia Lesion of Mice

TSUKASA TANII,1 TADASHI OKADA,2 KAZUYOSHI FUKAI,1 KOICHI NAKAGAWA1 and TOSHIO HAMADA1

1Department of Dermatology and 2Department of Physiology, Osaka City University Medical School, Osaka, Japan

A histological investigation was made of the quantitative behavior of mast cells in bald areas on mice and in human alopecia areata. C57BL/W+ mice and +/+ mice with alopecia lesions were examined. In C57BL mice and +/+ mice, the number of dermal mast cells (per square mm) in the bald areas was greater than that in controls. The mean number of mast cells was slightly higher in human alopecia areata than in the controls. Since W/Wv mice lacking mast cells developed alopecia lesions, it seems that mast cells are not necessary for the onset of alopecia areata but could play some part in regrowth. Key words: C57BL mouse; W/Wv mouse. (Received August 24, 1984.)

T. Tanii, Department of Dermatology, Osaka City University Medical School, 1-5-7, Asahimachi, Abeno-ku, Osaka 545, Japan.

Histopathological studies of alopecia areata have disclosed an increase in the number of mast cells in connective tissue below the epidermis and in surrounding hair follicles (1). We studied the appearance of transient alopecia in C57BL mice (2), and discovered histologically an increase in the number of mast cells in the bald area. We also observed alopecia lesions in W/Wv mice lacking mast cells (3) and in +/+ mice. The aim of this investigation was to study changes in the numbers of mast cells in the bald area of mice and also in human alopecia areata.

MATERIALS AND METHODS

Mice with alopecia lesions were as follows: seven C57BL/10-H-2d mouse (C57BL mouse), two WBB6F1 ((WB-W+/+×(C57BL6-W+/+))F1-W/Wv mouse (W/Wv mouse) and three WBB6F1 mice (+/+ mouse). In the mice with alopecia lesions (Fig. 1), biopsies were taken from the bald areas.

For control purposes, hairy skin was taken from the same mice. In 6 patients with alopecia areata, biopsies were taken from the bald areas of the scalp. Control specimens were taken from marginal normal skin at the excision of seven sebaceous nevi of the scalp.

The specimens were fixed in 10% formalin, mounted in paraffin wax, and cut at a thickness of 7 µm.

Fig. 1. +/+ mouse with alopecia lesions.
followed by staining with toluidine blue. Measurements were made of four sections of the dermis in each specimen. The counting of mast cells in each section was made on a specimen of dermis 2000 µm wide and 500 µm deep from just below the epidermis. The mean value was expressed as the number of mast cells per square mm of dermis.

RESULTS

The mast cell populations (mean value/mm²) in the dermis of the bald and hairy areas are shown in Fig. 2. Mast cells in the bald area were considerably more numerous than in controls in C57BL mice (bald area: 81.1 ± 22.3, hairy area: 18.6 ± 10.1) and in +/+ mice (bald area: 94.7 ± 22.9, hairy area: 26.0 ± 11.5). Mast cell numbers were increased throughout the dermis of the lesions (Fig. 3) and were numerous around the hair follicles. Mast cells were not present in W/W° mice. The mean mast cell count was slightly higher in the lesions of human alopecia areata than in the controls, though the difference was not significant.

Fig. 2. Numbers of mast cells in the bald and hairy areas.

Fig. 3. Numerous mast cells are present in the dermis. Alopecia lesion on C57BL mouse. Toluidine blue staining, × 150.
DISCUSSION

It has been reported that mast cell numbers are increased in human alopecia areata (1), and also in mice during a period of the telogen stage to the early anagen stage of the hair cycle (4). The present study showed that the mast cells increased markedly in the bald area of mice but not significantly in human alopecia areata. The reason might be that the 6 humans had alopecia of both short and long duration. Since W/W⁺ mice lacking mast cells developed alopecia lesions, it seems that mast cells are not involved in the onset of alopecia, but could be involved when the lesions regrow.

REFERENCES

Macromelanosomes in X-Linked Ocular Albinism (XLOA)

TAKASHI YOSHIKIE, MOTOMU MANABE, MUTSUO HAYAKAWA, and HIDEOKI OGAWA

Department of Dermatology, and Department of Ophthalmology, Juntendo University, Tokyo, Japan

A case of X-linked ocular albinism is reported. Characteristic Masson-Fontana positive and Dopa positive giant melanin granules were found in keratinocytes, melanocytes and upper dermis. Ultrastructurally the macromelanosome was composed of a dense core and a less dense surrounding mantle. (Received July 17, 1984.)

T. Yoshiike, Department of Dermatology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyoku, Tokyo 113, Japan.

The classical form of X-linked ocular albinism (XLOA) reveals symptoms and manifestations mainly limited to the eyes, such as reduced visual acuity, translucent irides, congenital nystagmus, photophobia, hypopigmentation of the fundi with absent foveal reflexes, and a high incidence of strabismus. Although XLOA frequently involves skin lesions such as hypopigmented macules or patches, this condition was until recently considered to be confined to the eyes. After the documentation of giant melanosomes (macromelanosomes) within the epidermis (1), skin biopsy has become a relatively easy procedure in order to define the diagnosis of XLOA. This is of the same importance as steroid sulfatase assay for dermatologists in the definitive diagnosis of X-linked ichthyosis.

Dermatologists rarely have a chance to see patients with XLOA due to the fact that the symptoms are usually limited to the eyes. Therefore, to our knowledge, this disorder has not yet been reported in journals of dermatology. However, dermatologists will certainly become more involved with this disorder due to probable consultations from ophthalmologists. We report here briefly on a typical case of XLOA.