Vitamin D Metabolites in Generalized Scleroderma
Evidence of a Normal Cutaneous and Intestinal Supply with Vitamin D

JØRGEN SERUP and HANS HAGDRUP
Department of Dermatology (with Connective Tissue Research Laboratories), Rigshospita/, Copenhagen, Denmark

Vitamin D metabolites in serum were analysed in 20 patients with generalized scleroderma. The concentration of 1,25-dihydroxyvitamin D was normal, however, significantly lower concentrations (p<0.05) were found in 7 patients with cutaneous calcinosis in comparison with 13 patients with no calcinosis. Concentrations of 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, and vitamin D-binding protein (Gc globulin) were all within the normal range. The 24,25-dihydroxy-vitamin D level correlated with the duration of disease (r=0.4453, p<0.05), and 25-hydroxyvitamin D tended to correlate (r=0.3016, NS).

The study strongly indicates that cutaneous synthesis, intestinal absorption and hepatic hydroxylation of vitamin D are not deficient in scleroderma. A relative but specific decrease in the renal hydroxylation to 1,25-dihydroxyvitamin D, i.e. the active hormone, as the disease progresses and calcinosis occurs, is suspected. Key words: Systemic; Calcinosi. (Received January 3, 1985.)

J. Serup, Ingeborgvej 42, DK-2900 Hellerup, Denmark.

Cutaneous calcinosis occurs in about 40% of patients with generalized scleroderma (1). Recent endocrinological studies showed that patients with generalized scleroderma and calcinosis have increased concentration of parathyroid hormon in their blood and evidence of a mild secondary hyperparathyroidism (2). Another study showed a lower concentration of the active vitamin D hormone, i.e. 1,25-dihydroxyvitamin D, in patients with calcinosis in comparison with patients with no calcinosis (3). The hyperparathyroid state may be secondary to deficient intestinal absorption of calcium due to a decreasing formation of 1,25-dihydroxyvitamin D in scleroderma during progress of the disease.

Vitamin D synthesized in the skin or absorbed from the intestines is hydroxylated in the liver to 25-hydroxyvitamin D, and further hydroxylated to 1,25-dihydroxyvitamin D (active hormone) or 24,25-dihydroxyvitamin D (inactive metabolite) in the kidneys (4, 5, 6). Translocation of vitamin D from the skin into the blood stream is determined by a specific carrier protein, i.e. the vitamin D-binding protein (4, 7).

The purpose of this study was to assess if decreasing 1,25-dihydroxyvitamin D in generalized scleroderma possibly related to calcinosis is due to deficient hydroxylation in the liver and the kidneys, intestinal vitamin D malabsorption, or deficient vitamin D synthesis in diseased skin.

MATERIAL AND METHOD

Twenty patients (14 females, 6 males) with generalized scleroderma were studied. No patient taking vitamin D prophylaxis was included. The mean age was 52.8 years (range 31-71). The mean duration of scleroderma was 8.3 years (range 1-22). Patients were treated with inhibitors of collagen synthesis as described by Asboe-Hansen (8). Eighteen received penicillamine in combination with glutamine, one chlorpromazine, and one glutamine only. Seven patients had cutaneous calcinosis verified by radiography. The study was performed in the winter period from December to March.

Blood samples were taken in the morning. Serum Calcium ‘total’, Calcium ‘ion’, and phosphate were determined by standard methods. Serum 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, 25-hydroxyvitamin D, and vitamin D-binding protein (Gc protein) were analysed by Medicinsk
Laboratorium, Copenhagen, by radioimmunoassay and immune-chemical techniques of the laboratory.

Statistical methods employed were the Wilcoxon rank sum test and the Spearman correlation coefficient. $p<0.05$ was considered significant.

RESULTS

Results of analyses of Calcium and vitamin D in the serum are shown in Table I. The only significant difference between patients with calcinosis and patients with no calcinosis was a decreased concentration of 1,25-dihydroxyvitamin D ($p<0.05$) in the former. However, patients with calcinosis tended to have greater concentrations of both 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D as compared to patients with no calcinosis.

Analysis of the relation between duration of scleroderma and vitamin D metabolites as well as the carrier protein showed a positive correlation between 24,25-dihydroxyvitamin D and duration ($r=0.4453$, $p<0.05$) and a tendency to a correlation to 25-hydroxyvitamin D ($r=0.3016$, NS) while other relations were definitely insignificant (1,25-dihydroxyvitamin D, $r=0.1419$, NS; vitamin D-binding protein, $r=0.2289$, NS).

DISCUSSION

This study confirmed previous findings of different blood levels of 1,25-dihydroxyvitamin D in scleroderma with calcinosis and scleroderma with no calcinosis, i.e. a decreasing level in calcinosis (3). Concentrations of 25-dihydroxyvitamin D were both within normal ranges.

Patients with rachitis, osteomalacia, cirrhosis of the liver and intestinal conditions with malabsorption have a decreased level of 25-dihydroxyvitamin D in the blood (5). Thus, despite cutaneous as well as frequent internal involvement of patients with generalized scleroderma this study strongly indicated that the cutaneous synthesis and intestinal absorption of vitamin D, and the hydroxylation in the liver were all normal.

Decreasing 1,25-dihydroxyvitamin D concentrations in scleroderma patients with calcinosis might be due to a relative and selective defect in the renal hydroxylation, as the

| Table I. Calcium, phosphate, and vitamin D metabolites in serum of patients with generalized scleroderma related to cutaneous calcinosis |
|---------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Calcinosis ($n=7$) | Mean 2.34 1.22 1.18 44.3 3.24 71.1 | SD 0.06 0.07 0.14 26.0 2.62 30.9 | 5.51 | 1.04 |
| | No calcinosis ($n=13$) | Mean 2.45 1.26 0.99 32.9 1.85 103.0 | SD 0.14 0.05 0.17 22.9 2.00 39.8 | 5.67 | 1.05 |
| | Entire material ($n=20$) | Mean 2.41 1.25 1.06 37.6 2.37 92.9 | SD 0.13 0.06 0.18 24.2 2.28 38.4 | 5.61 | 1.02 |
| | Normal range 2.2-2.6 1.15-1.35 | 0.80-1.48 18.5-82.0 0.37-3.90 24-(50)-158 | 3.6-6.6 |

* Distribution in healthy individuals unsymmetric with concentrations of 50-158 pmol/l only occasionally.
significantly increasing level of 24,25-dihydroxyvitamin D during the course of scleroderma might indicate.

REFERENCES

Melanocyte Metabolites in the Urine of People of Different Skin Colour

L.-E. WIESTRAND, C. HANSSON, E. ROSENGREN and H. RORSMAN
Departments of Dermatology and Pharmacology, University of Lund, Lund, Sweden

The urinary excretion of 2 melanocyte metabolites was studied in normal people of different skin type. The sulphur-free indole derivative 6-hydroxy-5-methoxyindole-2-carboxylic acid was excreted in larger quantities by people with genetically dark skin, whereas the excretion of 5-S-cysteinyldopa was not related to pigment type. No correlation between 5-S-cysteinyldopa and 6-hydroxy-5-methoxyindole-2-carboxylic acid excretion emerged. Key words: 6-Hydroxy-5-methoxyindole-2-carboxylic acid; 5-S-Cysteinyldopa; Melanin; Pigment. (Received January 15, 1985.)

H. Rorsman, Department of Dermatology, University Hospital, S-221 85 Lund, Sweden.

Skin colour is largely dependent on the quantity and quality of the melanin in the skin. Melanin consists of heterogeneous macromolecules formed by dopa oxidation products. Oxidation products of dopa give black, insoluble pigments called eumelanin. Oxidation of dopa in the presence of cysteine gives lighter, soluble polymers called phaeomelanins.

Degradation studies of natural melamins have shown that sulphur is present in all vertebrate melamins (1). Insoluble melamins of the eye too give phaeomelanin products of degradation (2). Electron spin resonance studies on natural melamins from different sources have shown the whole range of melamins including phaeomelamins, eumelamins, and melamins of mixed type (3). The concept of mixed-type melanin with properties of both eumelamins and phaeomelamins is now widely accepted (4).