REFERENCES


Oral Retinoid in Combination with Bleomycin, Cyclophosphamide, Prednisone and Transfer Factor in Mycosis Fungoides

Hugh Zachariae,1 Eva Grunnet,1 Kristian Thestrup-Pedersen,1 Lars Molin,2 Henning Schmidt,3 Frode Starfelt1 and Kristian Thomsen2

1Departments of Dermatology, Marselisborg Hospital, University of Aarhus, Denmark, 2Läskoping University Hospital, University of Läskoping, Sweden, 3Odense University Hospital, University of Odense, Denmark, 4Ullevål Sykehus, Oslo, Norway and 5Finsen Institute, Copenhagen, Denmark

From the Scandinavian Mycosis Fungoides Study Group. In this study, the group also comprised Knut Wereide, Oslo

Received July 29, 1981

Abstract: Oral retinoids seem to have been of great benefit in a non-randomized study on advanced mycosis fungoides using two different chemotherapy regimens, one with retinoid, the other without. Both groups also received a 3-drug chemotherapy with bleomycin, cyclophosphamide and prednisone. Complete remission including all signs of lymph-node involvement was found in 8 of 10 patients of the retinoid treated group, while none went into complete remission in the control group. All in the control group died between 3 and 12 months after therapy, whereas all but one in the retinoid treated group are alive. Other treatment differences between the groups were related to the use of transfer factor, topical treatment, and steroid administration. These differences make a final evaluation of the use of retinoids in mycosis fungoides difficult at the present stage. Further studies are needed.

Key words: Retinoids: Transfer factor: Chemotherapy: Bleomycin: Cyclophosphamide: Prednisone: Mycosis fungoides

Vitamin A and its newly developed synthetic analogues have been used within recent years with great success in the treatment of disorders of keratinization. Lately retinoids have also attracted interest as pharmacological anticancer agents (1, 2, 4). We have tried out an oral retinoid RO 10-9359 (Tigason) as adjunct to a 3-drug combination chemotherapy comprising bleomycin, cyclophosphamide and prednisone for advanced mycosis fungoides (MF). Patients from Marselisborg Hospital in Aarhus received this treatment, together with transfer factor (TF), an immune-stimulatory agent, which is undergoing long-term evaluation against MF at this hospital (5), while patients of other participants in the Scandinavian Mycosis Fungoides Study Group (3) received the 3-drug chemotherapy alone. One patient from Aarhus received both the 3-drug chemotherapy and TF but no retinoids.

MATERIAL AND METHODS

Nine patients with MF in stage IV according to the staging criteria of the Scandinavian Mycosis Fungoides Study Group (3), i.e. with lymph-node involvement, and one patient having a subcutaneous tumour received the 3-drug combination of bleomycin, cyclophosphamide and prednisone (BCP) together with retinoid and TF. Six patients were treated with BCP alone.

All patients were allowed to continue their present topical treatment, which in Aarhus was nitrogen mustard (NM), in the other hospitals oral psoralen combined with long-wave ultraviolet light (PUVA). Both topical treatment schedules were performed according to the procedures of the group (3). Steroids were also administered somewhat differently among the patients. All patients from Aarhus received prednisone 40 mg daily throughout the treatment period, while the other patients received the same prednisone dosage orally only on days 1–7, but repeated every 3 weeks. Bleomycin was given 5 mg i.m. on day one and day four, repeated every third week. Cyclophosphamide was administered 100 mg/m2 orally each day, but eventually reduced in some patients according to toxicity. RO 10–
Table I. Responses following treatment with BCP (bleomycin, cyclophosphamide and prednisone) and retinoid in mycosis fungoides

<table>
<thead>
<tr>
<th>Pat. no.</th>
<th>Age/Sex</th>
<th>Stage</th>
<th>Start of therapy</th>
<th>Initial response</th>
<th>Present state</th>
<th>Additional treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40M</td>
<td>I Vb</td>
<td>Mar. 1980</td>
<td>CR</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45M</td>
<td>I Vb</td>
<td>May 1980</td>
<td>CR</td>
<td>PR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>3</td>
<td>43F</td>
<td>I Va</td>
<td>Oct. 1980</td>
<td>CR</td>
<td>CR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>4</td>
<td>64M</td>
<td>I Vb</td>
<td>June 1980</td>
<td>CR</td>
<td>CR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>5</td>
<td>68M</td>
<td>I Vb</td>
<td>Oct. 1980</td>
<td>CR</td>
<td>PR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>6</td>
<td>60F</td>
<td>I Vb</td>
<td>Sep. 1980</td>
<td>CR</td>
<td>CR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>7</td>
<td>76M</td>
<td>Va</td>
<td>Oct. 1980</td>
<td>CR</td>
<td>CR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>8</td>
<td>73M</td>
<td>I Vb</td>
<td>Oct. 1980</td>
<td>Dead</td>
<td>TF + NM</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>68M</td>
<td>I Va</td>
<td>Mar. 1980</td>
<td>CR</td>
<td>PR</td>
<td>TF + NM</td>
</tr>
<tr>
<td>10</td>
<td>63M</td>
<td>I Va</td>
<td>Dec. 1980</td>
<td>PR</td>
<td>PD</td>
<td>TF + NM</td>
</tr>
</tbody>
</table>

* Died whilst CR in Feb. 1981 due to a pulmonary embolus from a deep vein thrombosis.

The most pronounced side effect seen was haemorrhagic cystitis following cyclophosphamide treatment. This led to discontinuation of BCP in 4 of 5 cases after 12,000, 20,250, 7,800, and 9,200 mg of cyclophosphamide respectively. All these 5 also received Tigason. One patient receiving BCP alone got haemorrhagic cystitis. Temporary bone-marrow depression was occasionally found. Tigason gave the well-known side effects such as telogen defluvium, cheilitis, milder desquamation of skin, and pruritus. These side effects were never of such a degree as to warrant discontinuation of the drug.

COMMENTS
This is a non-randomized pilot study using two different regimens of chemotherapy, one with retinoid, the other without. The disease had reached

Table II. Responses following treatment with BCP in mycosis fungoides

<table>
<thead>
<tr>
<th>Pat. No.</th>
<th>Age/Sex</th>
<th>Stage</th>
<th>Start of therapy</th>
<th>Initial response</th>
<th>Present state</th>
<th>Additional treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/M</td>
<td>IVb</td>
<td>June 1979</td>
<td>PD</td>
<td>Dead</td>
<td>PUVA</td>
<td></td>
</tr>
<tr>
<td>76/M</td>
<td>I Va</td>
<td>Feb. 1980</td>
<td>PR</td>
<td>Dead</td>
<td>PUVA</td>
<td></td>
</tr>
<tr>
<td>63/M</td>
<td>IVb</td>
<td>Apr. 1980</td>
<td>PR</td>
<td>Dead</td>
<td>PUVA</td>
<td></td>
</tr>
<tr>
<td>55/F</td>
<td>I Va</td>
<td>Apr. 1980</td>
<td>PR</td>
<td>Dead</td>
<td>PUVA</td>
<td></td>
</tr>
<tr>
<td>62/F</td>
<td>I Vb</td>
<td>June 1980</td>
<td>PD</td>
<td>Dead</td>
<td>PUVA</td>
<td></td>
</tr>
<tr>
<td>58/M</td>
<td>I Vb</td>
<td>May 1980</td>
<td>PR</td>
<td>Dead</td>
<td>TF + NM*</td>
<td></td>
</tr>
</tbody>
</table>

* Later methotrexate.

* This patient died of thrombosis following cancer surgery.
roughly the same extent and stage in the two groups. TF was used in both groups but all in the retinoid group received TF, as against only one in the non-retinoid group. Also the adjunct topical treatment differed, together with the mode of prednisone administration. In spite of these differences, we feel our data should receive attention due to the striking differences in the results of treatment.

Complete remission, including resolution of palpable lymph-nodes, was found in most patients in the retinoid treated group, while only a partial remission was obtained in patients treated with BCP alone, and all of these patients have now succumbed.

Due to the other differences in treatment schedules already mentioned, we dare not at present to attribute the good therapeutic results to retinoids alone. It is our opinion, however, that the addition of retinoids was the most significant difference in treatment between the groups. Our experience has been that PUVA and nitrogen mustard are of equal efficacy (3), and TF has so far shown only insignificant differences in survival rates in MR (6). Further and more easily compared studies on retinoids in MF are necessary.

ACKNOWLEDGMENTS

This work was supported by the Danish Cancer Society, the Norwegian Cancer Society, the Swedish Cancer Society and the Edvard Welandt Foundation.

REFERENCES

2. Hogan, B.: Epithelial cancer, differentiation and vitamin 
3. Molin, L., Thomsen, K., Volden, G., Groth, O., 
Fischer, T., Nordenstofl, A. & Zachariae, H.: Aspects of 
the treatment of mycosis fungoides. Cutis 25: 155., 
1980.
5. Zachariae, H., Ellegaard, J., Grunnet, E. & Thostrup-
Pedersen, K.: Transfer factor in mycosis fungoides: 
Thomsen, K.: Transfer factor in mycosis fungoides. 
1980.

Acta Derm Venereol (Stockholm) 62

Effect on Oral Leukoplakia
of Reducing or
Ceasing Tobacco Smoking

B. Roed-Petersen

Department of Oral Medicine and Oral Surgery,
University Hospital. Rigshospitalet, 
Tagensvej 18. DK-2200 Copenhagen. Denmark

Received June 9, 1981

Abstract. Oral leukoplakia patients who were smokers 
were asked to give up their smoking habits. It was found 
that leukoplakias present in persons with smoking habits 
might be reversible, when the smoking habit was reduced 
or given up. Leukoplakias which were not reversible 
could possibly be of the same idiopathic type as leuko-
plakias in non-smokers.

Key words: Oral; Leukoplakia; Tobacco

Oral leukoplakia is a precancerous lesion (1, 2, 3, 5, 
7, 9) which has a statistically significant association 
with tobacco use, either in the form of tobacco 
chewing or tobacco use, either in the form of tobac-
cco chewing or tobacco smoking (3, 7, 8). This is 
indicated by observations showing that there is a 
larger proportion of tobacco users among patients 
with oral leukoplakia than in the normal population. 
Furthermore, by undertaking a multivariate 
analysis on one such set of data it has been shown 
that the high male-female ratio for oral leukoplakia 
is secondary to differences in smoking habits among 
males and females (7).

It has also been reported that oral leukoplakias 
were reversible after tobacco smoking had ceased 
(9, 10), and/or local irritants were removed (1), but 
the effect of stopping smoking was not examined 
separately (1, 9. 10). The present study was inti-
itated to examine whether reducing or ceasing to 
smoke tobacco would by itself result in a decrease 
in or disappearance of oral leukoplakia.

MATERIAL AND METHODS

In the present study oral leukoplakia was defined as a 
white patch, not less than 5 mm across, which could not 
be removed by rubbing, and which could not be ascribed 
to any other diagnosable disease. The definition did not 
carry any histological connotation (5). The definition is 
compatible with that suggested in 1978 by the WHO Col-