Inhibited Proliferation of Human Scleroderma Skin Fibroblasts and Rheumatoid Synovial Cells with Griseofulvin in vitro

G. C. Priestley and J. C. Brown

Department of Dermatology, University of Edinburgh, Edinburgh, Scotland

Received August 7, 1981

Abstract: Griseofulvin at 2-17 μg/ml in vitro inhibited the proliferation of scleroderma skin fibroblasts and rheumatoid synovial cells. The inhibition was concentration-dependent, with little difference between the two types of cells. Mean ID₅₀ values from the four strains of each group were 9.2 for fibroblasts and 9.5 for synovial cells. The results show that griseofulvin at therapeutic concentrations can have a direct effect on the growth of cells cultured from diseased human connective tissues.

Key words: Griseofulvin; Skin fibroblasts; Scleroderma; Rheumatoid arthritis

We have shown that the antifungal antibiotic griseofulvin inhibits proliferation, glycosaminoglycans (GAG) secretion and protein synthesis in fibroblasts grown from infant foreskin (8). These are characteristic actions of anti-inflammatory drugs, in agreement with previous reports of anti-inflammatory activity for griseofulvin (9), and are of interest in relation to griseofulvin's suggested clinical use in several connective tissue diseases. Because the behaviour of infant genital skin may differ from diseased adult skin on other sites or from other connective tissues, we have now examined the effect of griseofulvin on the proliferation of scleroderma skin fibroblasts and rheumatoid synovial cells in culture.

METHODS

Derivation of four strains of scleroderma skin fibroblasts (SD 3, 6, 9 and 10) and four strains of rheumatoid synovial cells (RA 1, 2, 5 and 6) has been reported elsewhere (7). Cultures were maintained at 37°C in Dulbecco-Eagle medium containing 10% foetal calf serum, 4 mm glutamine, 100 units/ml penicillin and 100 μg/ml streptomycin (all from Gibco-Europe, Paisley, Scotland) with refeeding on alternate days. Cells were in passages 6-12.

REFERENCES

Proliferation tests were performed as described previously (7), using replicate cultures in small flasks (25 cm² area) seeded with 10⁵ cells. Griseofulvin was dissolved in dimethyl sulphoxide and added to media to give final concentrations of 2, 4, 8 and 17 µg/ml griseofulvin in 0.1% dimethyl sulphoxide. Controls received 0.1% dimethyl sulphoxide only. Griseofulvin was present in the cultures from the third to the sixth day, each concentration of the drug being tested on four (occasionally three) cultures. Cell counts were performed on control cultures on day 3 and on control and treated cultures on day 6, and the increase in cell number over days 3 to 6 was expressed as a percentage of that in controls. Counts were made on cell suspensions prepared with trypsin-verose, using a Coulter counter. Griseofulvin concentrations giving 50% inhibition (ID₅₀) were read from semilogarithmic plots of proliferation versus concentration (see Fig. 1).

RESULTS

Dose-response curves for individual cell strains are shown in Fig. 1. In keeping with previous experience, individual strains within each group varied in their response. ID₅₀ values ranging from 6-13 µg/ml. Griseofulvin at 17 µg/ml produced 59-99% inhibition. Proliferation of one strain (SD 6) was significantly stimulated at 2 µg/ml (controls 100±1 (S.E.M.) drug-treated 110±2; p<0.02). The overall effects in the two groups of cell strains were remarkably similar (Fig. 2) with mean ID₅₀ values of 9.2 and 0.5 µg/ml. Rheumatoid synovial cells grow in rather disorganized swirling patterns on plastic surfaces, compared with fibroblasts, and griseofulvin at 2 µg/ml appeared to improve the regularity of the swirling without notably affecting proliferation, which was 98, 103, 84 and 101% of controls in the four strains at this concentration.

DISCUSSION

Fibroblast cultures have proved a useful test system for various drugs, but use of non-human or otherwise inappropriate cell strains has limited the clinical interest of the data. These results show that griseofulvin can have a direct effect on the proliferation of cells cultured from diseased human connective tissue. The inhibition recorded resembles that found in previous work with other cell strains (8), where effects on GAG secretion and total protein synthesis were also encountered. In tests on fibroblasts in vitro GAG secretion is even more susceptible to inhibition by drugs than is cell proliferation, and is inhibited at lower drug concentrations, while protein synthesis is more resistant, only being affected at drug concentrations causing appreciable (>50%) inhibition of proliferation (7, 8). The fact that proliferation begins to be affected at griseofulvin concentrations (2-4 µg/ml) resembling peak serum values in patients receiving oral therapy (6) suggests that similar modulation of connective tissue cell behaviour may occur in vivo. Benefits from griseofulvin have been reported for patients with shoulder/hand syndrome (2), scleroderma (3) and Raynaud's phenomenon (4).

The mechanism of griseofulvin's effect on cell proliferation is uncertain. In a range of fungal and mammalian cells it impairs microtubule function, producing metaphase arrest of mitosis or the ap-
pearance of multinucleate cells (4, 10) but we did not see these effects in human skin fibroblasts (8). Many actions of anti-inflammatory drugs are mediated through inhibition of prostaglandin synthesis or availability and griseofulvin can block the effects of prostaglandin E$_2$ (9). Dose-response curves for prostaglandins tend to follow a characteristic bell-shape with opposite effects at high and low concentrations (5). Part of such a curve might be apparent in Fig. 1 if prostaglandin was responsible for the effects on cell proliferation. In fact only one cell strain showed stimulated proliferation at low griseofulvin concentration. Other drugs with anti-inflammatory properties have given similarly inconsistent low-dose stimulation in our previous work (7), so the evidence for prostaglandin involvement is not convincing.

ACKNOWLEDGEMENT
This work was supported by a grant from the Medical Research Council.

REFERENCES

Exanthema fixum Due to Ultraviolet Radiation

J. Langeland
Department of Dermatology, Rikshospitalet, Oslo, Norway
Received August 17, 1981

Abstract. A case of exanthema fixum caused by sun exposure and reproducible by UV-A and UV-B exposure tests is described.

Key words. Exanthema fixum; Photosensitivity; Ultraviolet radiation

The concept of exanthema fixum was introduced by Brocq, who in 1894 described a rash consisting of sharply demarcated round or ovoid edematous plaque caused by phenazone (1). The number of drugs known to be capable of producing this characteristic lesion is now large and still increasing (2, 5, 6). Various foods as possible causes have also been mentioned (3). However, as far as is known, there is no report among existing literature of fixed eruptions having been caused by electromagnetic waves.

CASE REPORT

A 47-year-old man was referred to our clinic with a rash which had occurred after sun exposure of 30 min at about 60°N latitude (Oslo). The man was not taking medicaments of any kind. He had experienced an identical eruption each time he had stayed in the sun for a certain time over the last four summers. The lesion appeared during or after the exposure, itched and disappeared in a couple of weeks, leaving slightly pigmented areas. There were partly detached, partly confluent ovoid plaques 2–6 cm in diameter with erythema, pigmentation and a sharp demarcation from normal skin on the patient's legs (Fig. 1). Histological examination showed superficial and deep subcutaneous inflammation, not specific for, but consistent with the diagnosis of exanthema fixum (4).

MATERIALS AND METHODS

After the rash had disappeared, light tests were performed. For the UV-B test a Xenon Arc Lamp with a Schott WG 295 cut-off filter was used. This gives a continuous spectrum of electromagnetic waves above 295 nm. For the UV-A test a Waldmann UV 100 with Sylvania