Comparing different CT, PET and MRI multi-modality image
combinations for deep learning-based head and neck tumor
segmentation (supplemental material)

Jintao Ren

1. Metrics

The Dice similarity coefficient (Dice) describes the spatial overlapping proportion
between prediction P and the ground truth G. Dice is defined as:
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P and G voxel points can be represented by Boolean using true positive (TP), false
positive (FP), and false negative (FN). The size of P is TP+FP, the size of G is
TP+FN. Thus, Dice could also be defined as:
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Where S; and S2 denote the contour voxel sets of prediction and ground truth.
Where d(x,y) indicates the Euclidean distance between voxel x and voxel y from
two surfaces. The extreme long-distances were excluded by the 95th percentile of HD
(HD95).

2. Data acquisition

CT and PET were obtained by FDG-PET/CT scanner with various resolution spacing.
CT has a spatial resolution of 1.17 x 1.17 x 3mm3 in most cases, whereas PET



has a spatial resolution of 2 x 2 x 2mm3. T1-weighted (in-phase mDIXON) and T2-
weighted MRI sequences were used. The resolution spacing for T1 and T2 sequences is
0.69 x 3 x 0.69mm? and 0.93 x 0.93 x 4mm?, respectively. We deformably registered
MR images to CT scans using Elastix[1]. We adapted the registration parameters from
[2]. We registered the T1 and T2 image simultaneously, using a pyramid scheme with
3 resolutions, and downsampling of 4, 2, and 1. Registration metric was a combination
of AdvancedMattes Mutuallnformation and a TransformRigidityPenalty, with weights
of 1 and 40. Each resolution consisted of 600 iterations, using 5000 random spatial
samples, and a finalgridspacing of 10 mm.

3. Image sampling and data augmentation

The Head and Neck tumor segmentation dataset has a skewed/unbalanced
foreground to background «class ratio. The median image size is
268 x 268 x 226mm = 16,232, 224mm3, while the median foreground GTVs size
is 28, 329mm?, according to our data. As a result, the class unbalances problem must
be considered when choosing image sampling, augmentation, and loss function for
deep learning.

The choice of batch size, patch size, and patch numbers must all be taken into
account as a chain for image sampling. Before these steps, the z-score was employed
to standardize each modality image for each patient, which ensures voxels in each
modality has a similar data distribution. To fit the GPU memory while ensuring a
smooth gradient descent, we employ a batch size of 2 and a patch size of 128 x 128 x
64 x N , where N refers to the number of modalities.

We used sliding window patch extraction over region-of-interest(ROI) extraction
to avoid additional workflow. Each patient requires multiple patches when using the
sliding window method. We first used the slide window to extract patches that just
covered all regions from the image and then randomly over-sampled more patches over
the GTV regions. We decided on 64 as the total number of patches for each patient
since it worked the best among several candidates.

To avoid the over-fitting, we used random rotations from -30 to +30 degrees over the
axial axis, axial rotations (90, 180, 270 degrees), and flipping over the axial, sagittal,
or coronal axes for data augmentation.

4. Residual 3D UNet

We employed the Residual 3D UNet[3,4] to conduct our segmentation task. Like other
state-of-the-art segmentation architecture[5,6], it obeys an encoder-decoder structure.
In all convolutional blocks, 3D convolutions with residual connections, ReLLU activation
functions, and batch normalization are used. We chose three down-sampling and
three up-sampling processes based on the size of our image, which helps to lower
the parameters and mitigate the over-fitting problem. It has 64 layers of feature
maps after the first convolution block, and 512 layers after the bottleneck block.
3D transposed convolution is used for upsampling, and 3D max-pooling is used
for downsampling. Element-wise addition is used to create both short and lengthy
residual /skip connections. (Figure 1).

According to our findings, 3D Residual UNet outperformed 3D Dense UNet and 3D
UNet with our data. Three times dowsampling/upsampling is preferred to four times



dowsampling /upsampling because it reduces generalization error and propagation time
while maintaining the same level of accuracy.
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Figure 1. Network architecture plot. For input image tiles, different multi-modality images were consisted in
the channel dimension along with three spatial dimensions.

5. Loss function

It is common in medical image segmentation, for the target region to encompass only a
small portion of the image. This usually resulting in a network with a high bias towards
background predictions|7] . Several attempts have been made to solve this unbalanced
class problem previously[7-10]. Among them, Dice loss[7] is the most common one,
it alleviates the imbalance problem by directly optimizing Dice Similarity Coefficient
using overlaps between prediction and ground truth. Thus, small targets have more
weight on the loss calculation. In this task, however, we observed severe oscillation
in the loss curve when training while only optimizing Dice loss. The high GTV size
variance may have contributed to this unstable situation. The focal loss[8] is a variant
of cross entropy(CE), and it skews weights for the hard examples by reducing the loss
assigned to well-classified examples.

We employ a hybrid dual loss function as our loss function in this study: £pocar +
L pice- The hybrid loss function combines the benefits of both loss functions. The focal
part skews the weight for challenging samples, while the Dice part is sensitive to small
objects[11], the training procedure is also much more stable when combined[12].

The focal loss is computed as:
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where g € [0, 1] is the predicted output, y € 0,1 is the ground truth mask. N is the
total number of voxels in the images. The Dice loss is computed as:
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The € is used to avoiding the dividing by 0 numerical problem.

Based on validation set Dice Similarity Coefficient on CT-PET-MRI, we experienced
performance differences between the choice of loss functions as Dice + Focal > Dice+
CE > Dice > CE.

6. Train and inference

Tensorflow 1.15 was used to train the models. we choose Adam as the optimizer with a
learning rate of 3e — 5, beta; = 0.9, betas = 0.999, and a batch size of 2. The test was
carried on on an Nvidia Tesla V100 GPU with 16GB of RAM. The maximum number
of training epochs was set to 60. We saved all of the trained model weights after each
epoch while training. The best trained weights were chosen with highest average Dice
on validation set, which is usually around 40 epochs.

For test inference, we used the sliding window to extract 32 patches with overlap for

each image combination. Fe-inference-the-test-set—weused-thesliding-windowmethod

o act—pa s ord pa 6 odel-bias—w acted
sttb-volumes—around—theimageat—test—time: The mean values of overlapping voxels
were obtained to aggregate an output map. We use threshold of 0.5-majerity—vete- to
obtain a whole 3D binary GTV prediction afterward. Predicting a GTV segmentation
map from CT-PET-MRI took about 60 seconds per patient (size of 268 x 268 x 226),
while other combinations used less time.

To ensure consistency, a variety of random initiated training processes were
performed to observe the findings and conclusions. We analyzed all of the results
for each modality combination and chose one of several ”best-performing” models
to report on. The model random led occasional situations did not contribute to the
paper conclusion. However, we did not perform data shuffle procedures in a systematic
manner for all combinations.
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Figure 2. Linear correlations between different metrics and volumes of ground truth GTV for test set.
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Figure 3. Five different patients’ oncologist delineated binary mask; CT-PET-MRI, CT-PET, PET-MRI,
CT-MRI and ” Average of three” softmax output maps.
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7. Result supplement

7.1. GTV volumes and evaluation scores

As mentioned in the article, there is correlation between the actual GTV volumes and
prediction evaluation scores (Figure 2).

7.2. Case study probability maps

The Figure 3 shows experts delineation binary mask, CT-PET-MRI, CT-PET, PET-
MRI, CT-MRI, and "average of three” probability maps of the five patients mentioned
in the main article.
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