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ABSTRACT
Purpose: In current radiotherapy (RT) planning and delivery, population-based dose-volume con-
straints are used to limit the risk of toxicity from incidental irradiation of organs at risks (OARs).
However, weighing tradeoffs between target coverage and doses to OARs (or prioritizing different
OARs) in a quantitative way for each patient is challenging. We introduce a novel RT planning
approach for patients with mediastinal Hodgkin lymphoma (HL) that aims to maximize overall out-
come for each patient by optimizing on tumor control and mortality from late effects simultaneously.
Material and Methods: We retrospectively analyzed 34HL patients treated with conformal RT
(3DCRT). We used published data to model recurrence and radiation-induced mortality from coronary
heart disease and secondary lung and breast cancers. Patient-specific doses to the heart, lung, breast,
and target were incorporated in the models as well as age, sex, and cardiac risk factors (CRFs). A pre-
liminary plan of candidate beams was created for each patient in a commercial treatment planning
system. From these candidate beams, outcome-optimized (O-OPT) plans for each patient were created
with an in-house optimization code that minimized the individual risk of recurrence and mortality
from late effects. O-OPT plans were compared to VMAT plans and clinical 3DCRT plans.
Results: O-OPT plans generally had the lowest risk, followed by the clinical 3DCRT plans, then the
VMAT plans with the highest risk with median (maximum) total risk values of 4.9 (11.1), 5.1 (17.7), and
7.6 (20.3)%, respectively (no CRFs). Compared to clinical 3DCRT plans, O-OPT planning reduced the
total risk by at least 1% for 9/34 cases assuming no CRFs and 11/34 cases assuming presence of CRFs.
Conclusions: We developed an individualized, outcome-optimized planning technique for HL. Some
of the resulting plans were substantially different from clinical plans. The results varied depending on
how risk models were defined or prioritized.
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Introduction

The prognosis for patients with Hodgkin lymphoma (HL)
with modern combined modality therapy (CMT) is excellent
for patients with early stage disease, with 5-year freedom
from treatment failure over 85–90% [1,2], and still good for
patients with advanced disease, with a 3-year progression
free survival (PFS) of around 75% [3]. It is well known that
radiation therapy to the mediastinum increases the risk of
second malignancies [4,5], primarily in the breasts in female
patients and in the lungs, and the risk of cardiac morbidity
and mortality [6–9]. Though modern radiotherapy (RT)
approaches such as involved site radiation therapy (ISRT)

[10–13] lead to much lower doses and smaller fields than
mantle field irradiation, which was abandoned 15–20 years
ago, minimizing the risk of serious long-term effects of RT in
each individual patient remains important.

The goal of RT planning is to optimize the therapeutic
ratio, and population-based dose-volume constraints are used
in current clinical practice to limit the risk of adverse effects.
However, using population constraints may be unreasonable
in an individual patient due to the patient’s anatomy relative
to the target volume and patient-specific risk factors. For
example, for patients with extensive disease, doses close to or
exceeding the usual constraints may be accepted if maximum
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tumor control is prioritized. Conversely, for patients with lim-
ited disease, the conventional dose constraints may lead to
acceptance of plans that are suboptimal. Ideally, doses to all
normal structures should be kept as low as reasonably achiev-
able, with emphasis on the most critical organs [14]. In the
particular case of early-stage HL, it might even be clinically
preferable in some cases to accept a small compromise of tar-
get coverage in order to reduce the dose to a critical OAR and
the associated risk of late effects. However, most treatment
planning systems are not suited to this scenario, and those
compromises are performed subjectively. To this end, we
need a flexible dose-planning tool that allows us to optimize
the tradeoff between the risks of recurrence and various
severe late effects to achieve the best overall outcome for
each patient with HL by optimizing life expectancy.

To directly balance these tradeoffs during planning, the
incorporation of biological or normal tissue complication
probability (NTCP) models into treatment plan optimization
has been proposed [15–19]. Various biological optimization
methods have been explored for disease sites such as pros-
tate cancer [20–23], head and neck cancer [24,25], brain can-
cer [26], breast cancer [27], and intrahepatic tumors [28]. For
HL, a tool for evaluating biological endpoints for already cre-
ated treatment plans has been developed [29], but the direct
application of biological models in RT plan optimization, to
the authors’ knowledge, has not yet been investigated. In
addition, most reports focus on the probability of a side
effect, without considering that the severity/mortality burden
is greater from some than others (e.g., second lung cancer vs
second breast cancer). The goal of this study was to explore
the potential benefit of an individualized O-OPT HL RT plan-
ning approach which considers the dose-response effect of
radiation on tumor control and mortality from late effects of
treatment simultaneously. We also investigated the sensitivity
of the O-OPT plan result to model parameters.

Material and Methods

Patients

CT datasets from 34 patients (17 male, 17 female) with
biopsy proven mediastinal HL and median age 33.5 years
(range 16–76), were selected for this retrospective study. All
patients were treated between 2006 and 2010 (Figure S1 in
the supplementary material) using the involved node radi-
ation therapy approach (INRT) [30]. Contours from the clinical
RT plans were used for O-OPT planning, and the clinical
plans were used as a reference for comparison with O-OPT
plans. The clinical plans were 3D conformal radiation therapy
(3DCRT), mostly with anterior-posterior posterior-anterior
(AP-PA) beam setup with energy of 6MV. In addition, 2-arc
volumetric modulated arc therapy (VMAT) plans were also
used for comparison with O-OPT plans [31]. All clinical
3DCRT and VMAT plans were renormalized to a mean dose
of 30.6 Gy to the clinical target volume (CTV) (1.8 Gy/fraction)
for this study (AAA, Eclipse V13.6 Varian Medial Systems, Palo
Alto, CA).

Preplanning beam setup

Preplanning was performed by creating a set of beams from
which the optimization algorithm could choose for the O-
OPT plans. Sixteen co-planar gantry angles (0, 10, 20, 45, 90,
135, 160, 170, 180, 190, 200, 225, 270, 315, 340 and 350
degrees) were considered in addition to the clinically used
angles if not listed. The higher resolution of angles in the
AP-PA regions was chosen to mimic a ‘butterfly’ technique
as an option in the solution space [32]. The majority of fields
were 6MV, except two patients who were planned with
18MV fields, following their 3DCRT clinical plans. To allow
basic dose modulation, four fields were created for each
angle: one open field and three subfields that together fully

Figure 1. Beam setup for preplanning before optimization with 16 beam angles surrounding the patient (A) and examples of open and partially closed subfields
that were created for each beam angle (B–E). The CTV is shown in red.
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covered the target (e.g., superior, middle, and inferior), yield-
ing a total of at least 64 beams (Figure 1). Initial doses from
each beam were calculated using a commercial treatment
planning system (TPS) (AAA, Eclipse V13.6). Equal field
weighting was set in Eclipse TPS, which implies same dose
contribution to isocenter from each field (therefore, differing
monitor units). These dose matrices were exported for
optimization.

Inverse plan optimization

Inverse planning was performed by our in-house particle
swarm optimization (PSO) engine, implemented in MATLAB
(R2016a; MathWorks, Matick, MA, USA) [33]. PSO algorithm’s
highly-parallelizable, metaheuristic and global nature has
been thoroughly introduced in the literature [34,35] and
applied to various RT inverse planning studies [36–38]. PSO
searches the solution space with a group (swarm) of search
agents, called particles, that communicate with each other
while exploring the solution space individually. In this study,
a swarm of 30 particles were used over 30 iterations, and a
perturbation was applied at iteration 20 to avoid local
minima. At each perturbation step, the particle with the best
solution was kept, while the others were randomly re-distrib-
uted without erasing their personal bests from their memo-
ries. The output of the optimization was a list of monitor
unit (MU) values for each beam that described the O-OPT
plan. Beams with <5MU were eliminated during optimiza-
tion. If the optimization algorithm created a plan that was
equal in risk with the clinical 3DCRT plan, the clinical 3DCRT
plan was chosen. The objective function was defined as a
summation of the probabilities of disease recurrence and the
normal tissue complications given by the equation

ptot ¼ pDR þ pCHD þ pLC þ pBC (1)

where ptot is the total penalty function, and the penalty func-
tions for disease recurrence, mortality due to coronary
heart disease, mortality due to secondary lung cancer, and
mortality due to secondary breast cancer are given by
pDR, pCHD, pLC, and pBC, respectively. We weighted the
objective terms equally to indicate the seriousness of both a
recurrence and a fatal late normal tissue complication, but,
in a prospective scenario, the priorities of these terms can be
adjusted according to the clinician’s or patient’s preference.
The models for each penalty function are described below.

While the base analysis in this study focused on O-OPT
plans that were optimized purely to minimize ptot, for one
patient we also created (i) an O-OPT plan with a hard
requirement for �90% of CTV receiving the prescription dose
and (ii) another O-OPT plan with a hard requirement of
avoiding hot spot �40Gy as a sensitivity analysis. Hard
requirement (i) was introduced by replacing any dose matrix,
achieved by any PSO particle at any optimization iteration
that did not satisfy the required tumor coverage by a scaled
dose matrix that guaranteed the demanded coverage. In this
way, we were enforcing a continuous normalization through-
out the iterative optimization process. The details are
explained and evaluated in [37]. To enforce hard requirement

(ii), any solution not satisfying it during the optimization
search process was given an undesirable objective value
(pDR ¼1000%), forcing particles to go away from such solu-
tion in the next iteration.

Disease recurrence model

PFS at 5 years for different dose levels were obtained from
randomized trials in literature [1,2,39] assuming uniform
irradiation of the CTV. From these studies, hazard ratios (HRs)
were estimated at HR ¼ 2.44 for 0 Gy (no RT) relative to
30.6 Gy and HR ¼ 1.44 for 20Gy relative to 30.6 Gy.
Therefore, the estimated PFS at 5 years was given by

PFSðDÞ ¼ 0:872HRðDÞ (2)

where 0.872 is the observed PFS for full coverage from the
4xABVD (doxorubicin, bleomycin, vinblastine, and dacarba-
zine) þ 30Gy arm of HD11 trial [2]. HRðDÞ was calculated by
linear interpolation between HR estimates at assumed dose
levels of 0, 20, and 30.6 Gy from (1) the HD11 trial reporting
HR¼ 1.49, for 20Gy versus 30Gy [27], and (2) Herbst et al.’s
[39] review article reporting HR¼ 2.44 for no RT versus CMT.
The data from the HD11 trial reflect modern ABVD regimens,
while the data comparing chemotherapy alone to CMT
include studies of older chemotherapy regimens and may
thus slightly overestimate the effect of RT. Also note that the
HR extracted from Herbst et al. has been interpreted as rep-
resenting 0Gy versus 30.6 Gy, despite several dose regimens
in the underlying combined modality arms. The underlying
studies mostly used RT doses exceeding 30.6 Gy, except the
20Gy and 36Gy arms of the EORTC study where no differ-
ence between those dose levels was observed. In the
absence of a dose-response above 30.6 Gy we made the
pragmatic call to assume HR ¼ 2.44 for 0 versus 30.6 Gy for
the present purpose.

The penalty function for risk of disease recurrence was
given by

pDR ¼ 0:872� PFS Dð Þ (3)

In the more general case of a non-uniform target dose,
the mean dose to the CTV in Equation (2) was calculated as
generalized equivalent uniform dose (gEUD) [40]. For voxels
with dose >30.6 Gy, dose was capped at 30.6 Gy while for
voxels with dose �30.6 Gy, dose values were unchanged.
This capping of target dose was performed for the calcula-
tion of the gEUD so the model did not assume that hot
spots in the target were associated with improved
local control.

To explore and quantify the common clinical challenge of
tradeoffs between target coverage and normal tissue dose,
we allowed the O-OPT technique to suggest a target com-
promise to spare critical risk organs. One approach is to
assume that tumor control is a function of mean dose over
the target volume. Another common hypothesis is that the
minimum dose to the target drives the risk of recurrence.
Both situations can be modeled within the formulation of
the generalized equivalent uniform dose model suggested
by Niemierko, gEUD ¼ 1

n

Pn
i¼1 di

a� �1=a, where n is the
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number of voxels in the CTV, by adjusting the model param-
eter a [41]. In this formula, setting a¼ 1 corresponds to the
mean dose model, whereas a low negative value of a gives
high importance of the minimum dose (Figure S2). In this
study, we assumed a¼ 1, but also varied the value of a in
�22,�13,�9,�5, �1, 1f g as a sensitivity analysis. Figure S2
shows that as a decreases, not irradiating the entire tumor
translates to larger pDR (and therefore larger ptot). This makes
it less probable for the optimization algorithm to choose par-
tial irradiation of target for large negative a’s.

Normal tissue complication models

Following Brodin et al. [42], the penalty functions for normal
tissue late effect x were assumed to depend on mean dose
to the relevant organ (and other patient-specific factors):

px ¼wx�PFS�hrexcess, xðDxÞ
ð80 yr

eþ5yr

_hgen:pop:, x a, sexð Þ

� Sgenða, sexÞ
� �

da

(4)

where px is the penalty for the optimizer (coronary heart dis-
ease [CHD], lung cancer [LC], or breast cancer [BC]). wx is the
weighting factor for the mortality associated with x: PFS is
calculated in Equation (2). hrexcess, xðDxÞ is the excess hazard
ratio for complication x, which depends on dose ðDxÞ (Table
S1). _hgen:pop:, x a, sexð Þ is the population incidence for

complication x, which can depend on age (A) and sex.
Sgenða, sexÞ is the sex-specific survival of the general popula-
tion for each age [43]. The integral is from the age at expos-
ure (e) plus 5 years to 80 years (assuming a latency of late
effects of 5 years). The risk of CHD depended on the pres-
ence of cardiac risk factors (CRFs) and all patients were opti-
mized twice using different values for hrexcess, CHD assuming
CRF ¼ 0 and CRF > 0. (For details see Tables
S1–S4 [7,8,44–51]).

Outcome-optimized planning and analysis summary

For each patient, the preplan created in the TPS was
exported to the in-house PSO engine where the optimal
combination of beams and MUs was determined through
minimization of the summed risk of adverse outcomes (mod-
eled as ptot in Equation (1)). The clinical 3DCRT, VMAT, and
O-OPT plans were compared based on their ptot values as
well as dosimetric results; i.e., dose-volume histograms
(DVHs) and mean doses to the CTV and the OARs.

Results

O-OPT plans were created for 34 patients and compared
with clinical 3DCRT plans and VMAT plans. In general, O-OPT
plans had the lowest risk, followed by the clinical 3DCRT

Figure 2. Comparison of beams and dose distributions for clinical 3DCRT, VMAT, and outcome-optimized (O-OPT) plans for an example patient with a large benefit
(patient 3 in Table S5). The CTV is shown in pink and the heart is shown in yellow. The PTV is shown in cyan for the VMAT plan.
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plans, then the VMAT plans with the highest risk with
median (maximum) total risk values of 4.9 (11.1), 5.1 (17.7),
and 7.6 (20.3)%, respectively (assuming no CRFs) (Tables S5
and S6; Figure S3). Figure S4 gives a graphical representation
of sex- and CRF-based data in Tables S5 and S6. Figure 2
shows a comparison between the clinical 3DCRT, VMAT, and
O-OPT plans for a patient that had a large modeled benefit
from O-OPT planning. O-OPT plans did not provide a risk
benefit beyond the clinical 3DCRT plans for 19 of the 34
patients assuming no cardiac risk factors (CRF ¼ 0) (and 13
of 34 assuming CRF > 0), so for those patients the clinical
3DCRT plan was determined to be optimal and chosen as
the O-OPT plan. The modeled risk reduction, compared to
the clinical 3DCRT plans, was at least 1% for 9 patients
assuming no CRFs and for 11 patients assuming the presence
of CRFs (Figure S4(a)). Tables S5(a) and S5(b) in the supple-
mentary material summarize the differences between the O-
OPT and clinical 3DCRT plans for all patients with and with-
out CRFs, and Table S6 and Figure S4(b) summarize the dif-
ferences between the O-OPT and VMAT plans. Figure 3
shows the total risk from O-OPT plans compared to clinical
3DCRT plans (Figure S5 shows a comparison with VMAT

plans). Median and standard deviation of risk reduction in
O-OPT plans versus clinical 3DCRT plans were 0% and 2.3%,
respectively, for CRF ¼ 0; and, 0.1% and 3.5%, respectively,
for CRF > 0. Median and standard deviation of risk reduction
in O-OPT plans versus VMAT plans were 3% and 2.7%,
respectively, for CRF ¼ 0.

The sensitivity analysis for the target gEUD parameter is
shown in Figure 4 in an illustrative patient who had a con-
siderable (but not extreme) benefit from O-OPT planning in
the base analysis (patient 25). It is seen that by using a larger
negative gEUD parameter in the optimization process, the
resulting O-OPT plan prioritized target coverage and
approached the clinical plan. Figure 4 demonstrates the a-
dependent change in the loss of tumor control as tradeoff
for reducing fatal normal tissue complications (see also
Figure S6 for a visual demonstration of variation in dose dis-
tribution). Then, we created O-OPT plans with an extreme
value of the gEUD parameter of �22 (which heavily penal-
ized under-dosing any part of the target) for the nine
patients who had a benefit from O-OPT planning relative to
the clinical 3DCRT plans of at least 1% assuming CRF ¼ 0.
Out of these nine patients, only three had a predicted

Figure 3. Total risk for outcome-optimized (O-OPT) plans compared to clinical 3DCRT plans for all patients in two cardiac risk factor (CRF) scenarios (CRF ¼ 0 and
CRF > 0).
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benefit from the O-OPT planning with the gEUD parameter
of �22 (Table S7). Furthermore, to investigate the potential
increased risk of recurrence if the gEUD parameter was
(incorrectly) assumed to be 1 during optimization, we recal-
culated the risk of recurrence for various (true) values of the
gEUD parameter (Table 1) while keeping the plan and dose
distribution constant. We found that the unintended
increased risk of recurrence due to an incorrect assumption
during optimization could be up to 11.7%.

Finally, we performed a sensitivity analysis with additional
requirements during optimization (assuming CRF ¼ 0) for
the same patient as the other sensitivity analyses (patient
25). Three O-OPT plans were created for this patient: (1) O-
OPT plan (with no extra optimization requirements), (2) O-
OPT plan with a target coverage requirement (�90% of CTV
receiving 100% prescribed dose) and (3) O-OPT plan with
hot-spot avoidance requirement (40Gy maximum). Figure S7
compares the DVHs of the clinical 3DCRT plan and the result-
ing O-OPT plans with the dosimetric requirements. Adding
requirements either for target coverage or hot spot avoid-
ance reduced the benefit achievable by O-OPT planning.

Discussion

In this retrospective study, we investigated the potential of a
novel planning approach for patients with mediastinal HL
and created individualized plans that aimed to provide the

best outcome for the patient by simultaneously optimizing
the risk of disease recurrence and mortality due to normal
tissue complications. The ultimate aim of this study was not
a planning comparison in the traditional sense of the term,
but rather to show that including the risk of recurrence and
mortality from late toxicity within the optimization function
can drastically alter the resulting optimal dose distribution in
some patients. While the study contained equal numbers of
males and females, 8 of the 9 patients with a benefit �1%
from O-OPT planning were male. It is possible that the lack
of objectives for breast, or the difference in background rates
of complications (Tables S2 and S3) influenced this differ-
ence. A relationship between benefit from O-OPT planning
and age was explored, but no relationship was found. The O-
OPT plan was more likely to reduce the risk when the doses
to the heart and lungs from the clinical 3DCRT plan or VMAT
plan were high (Figure S8). For the patients with the largest
doses to the heart and lungs from the clinical 3DCRT plan
and largest benefit from O-OPT planning (�1%), the opti-
mizer would entirely avoid treating the inferior part of the
CTV near the heart. Hot spots were observed in O-OPT plans
(Figure S9), which were mostly due to the overlap of sub-
fields with collimator rotation from different beam angles or
from heavy field weighting from one direction. The total
number of beams was comparable in both clinical 3DCRT
and O-OPT plans for most patients, so the O-OPT plans
would be feasible with respect to delivery time.

Figure 4. Dose-volume histograms (DVHs) showing the difference in O-OPT plans (CRF ¼ 0 with hot-spot avoidance requirement) with respect to gEUD parameter
choice in target model for O-OPT planning for one patient (patient 25). The DVHs from the clinical 3CDRT plan are shown in dotted lines.

Table 1. Recalculation of the term pDR (risk of disease recurrence) for various values of the gEUD parameter a for one patient (patient 25).

gEUD parameter a (for recalculation, not optimization) 1 �1 �5 �9 �13 �22

Recalculated pDR for clinical 3DCRT plan (%) 0.04 0.05 0.05 0.06 0.06 0.07
Recalculated pDR for O-OPT plan (%) 3.0 8.1 13.9 14.4 14.6 14.8
Increase in pDR for the O-OPT plan relative to clinical 3DCRT plan for each value of a (O-OPTa-3DCRTa) (%) 3.0 8.0 13.9 14.4 14.5 14.7
Increase in pDR for the O-OPT plan for each value of a relative to O-OPT plan with a ¼1 (O-OPTa-O-OPTa¼1) (%) 0.0 5.0 10.9 11.4 11.6 11.7

For this recalculation, the O-OPT plan that was analyzed was created with the assumption of a¼ 1. Then, the plan was kept constant and pDR was recalculated
to see the impact of a different “true” value of a if 1 was assumed during optimization but was incorrect.
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These results should be understood within the context of
the assumptions and limitations of this study:

First, all risk models reflect our current best evidence
regarding dose-risk relationships. Other risk models exist, and
more detailed models could become available in the future.
Substantial compromises to target coverage were observed
in our results. They are, however, driven by our choice of a
mean dose model for tumor control probability after an
inhomogeneous dose distribution. While we performed a
sensitivity analysis of the gEUD model parameter, PFS data
after partial target compromise are not available in the litera-
ture and this is a major limitation of our approach. A number
of alternative modeling approaches for TCP exist including
the Poisson model of target cell kill and more elaborate
models combining diagnostic accuracy with the original lin-
ear-quadratic cell kill formulation [52]. Unfortunately, any
such model currently will suffer from the same lack of clinical
data to establish model parameters and model uncertainty in
the presence of inhomogeneous target doses. Therefore,
while this study is a first step in demonstrating the potential
of this type of optimization, clinical use should await
improved models that account for partial coverage of the
CTV. An alternative to including PFS in O-OPT planning
would be to constrain the optimizer to provide adequate
CTV coverage and only optimize on normal tissue biological
endpoints (Figure S7). Further limitations of our PFS model
were: (i) chemotherapy regimens were not uniform, and (ii)
the definition of disease-free survival might not necessarily
be uniform among the studies. However, we did every
attempt to focus our data on modern RT, and the 20–30Gy
prescription range is represented by 2� 4xABVDþ RT as
delivered in the HD10 and HD11 studies of the German
Hodgkin Study Group [1,2].

Second, for the base analysis in this study, no purely dosi-
metric constraints were used, and we observed dose distribu-
tions and maximum doses that were different from usual
clinical practice. For example, large maximum doses were
seen from subfield overlap and heavy weighting of fields
from one direction. When the heavily weighted field was
posterior, four plans exceeded the clinical spinal cord con-
straint of 45Gy, which may not be acceptable for treatment.
Additional optimization objectives might be needed to
achieve dose distributions that are also acceptable for the
risk of acute toxicity.

Third, the prioritization and weighting were selected to
consider disease recurrence to be as equally important as
mortality from radiation-induced coronary heart disease, lung
cancer, and breast cancer. As the impact of a recurrence on
a patient’s quality of life and the high associated risk of mor-
tality might occur earlier than the mortality from a late
effect, disease recurrence could theoretically have a time-
modulated weighting factor during optimization.
Furthermore, non-fatal normal tissue complications could
have effects on morbidity and quality of life, which were not
modeled here.

Finally, the planning technique limited the degrees of
freedom available to create the O-OPT plans. While we pro-
vided the optimizer with many fields and allowed simple

modulation with subfields, the O-OPT plans were still effect-
ively 3DCRT plans. The limited degrees of freedom (com-
bined with a lack of dosimetric constraints) resulted in hot
spots in the O-OPT plans (Figure S9). This O-OPT strategy
could be directly integrated with the TPS and combined with
VMAT or intensity modulated radiation therapy (IMRT), where
it might find more complex solutions with even lower risks.

Despite the above caveats, the approach used in this
study, allows a critical examination of the empirical knowl-
edgebase used in treatment plan optimization. It demon-
strates the complexities of plan optimization, which is at
present carried out in the clinic by crude, semi-quantitative
or qualitative methods. Specifically, this individualized dose
planning approach represents a framework for considering
quantitative estimates of multiple risks, explores the uncer-
tainty in our assumptions, and allows patient-level risk fac-
tors to be taken into account. With current capabilities in
storing, analyzing, and linking dose plans with treatment
outcomes, it is likely that this type of complex, computation-
ally expensive planning will become increasingly reliable in a
not too distant future. Importantly, the principles examined
in the present study for HL will be applicable to other tumor
types. However, the importance of local tumor control rela-
tive to the importance of different toxicities must be viewed
in the context of each individual tumor type as well as each
individual patient. In tumor types, e.g., head and neck can-
cer, where the relevant morbidities, although causing signifi-
cant symptoms, are rarely lethal, and where the risk of local
recurrence is higher and no curative salvage treatment is
available, the weights assigned to the different outcomes
will have to be modified accordingly.

In conclusion, we investigated an RT planning strategy
where we directly optimized on a metric for patient-specific
outcome. Total risk was defined as an equally weighted sum-
mation of risks of disease recurrence and mortality due to
radiation-induced coronary heart disease and secondary lung
and breast cancers. Our technique reduced the maximum
total risk considerably for patients who had large OAR doses
in their VMAT plans or clinical 3DCRT plans; however, for
patients with relatively low OAR doses in clinical 3DCRT
plans, there was no improvement achieved through O-OPT
planning. Sensitivity analyses investigating dependence of
our results on the TCP model (the gEUD parameter) and
dosimetric requirements revealed large variation in both plan
result and risk of recurrence, demonstrating a need for cau-
tion in future work on biologically optimized planning
for HL.
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