
ABSTRACT
Background: MicroRNA (MiR) influences the growth of cancer by regulation of mRNA for 50–60% of all 
genes. We present as per our knowledge the first global analysis of microRNA expression in anal cancer 
patients and their prognostic impact.
Methods: Twenty-nine patients with T1-4 N0-3 M0 anal cancer treated with curative intent from September 
2003 to April 2011 were included in the study. RNA was extracted from fresh frozen tissue and sequenced 
using NGS. Differentially expressed microRNAs were identified using the R-package DEseq2 and the end-
points were time to progression (TTP) and cancer specific survival (CSS). 
Results: Five microRNAs were significantly associated with 5-year progression free survival (PFS): Low 
expression of two microRNAs was associated with higher PFS, miR-1246 (100% vs. 55.6%, p = 0.008), 
and miR-135b-5p (92.9% vs. 59.3%, p = 0.041). On the other hand, high expressions of three microRNAs 
were associated with higher PFS, miR-148a-3p (93.3% vs. 53.6%, p = 0.025), miR-99a-5p (92.9% vs. 57.1%, 
p = 0.016), and let-7c-3p (92.9% vs. 57.1%, p = 0.016). Corresponding findings were documented for CSS.
Interpretation: Our study identified five microRNAs as prognostic markers in anal cancer. MiR-1246 and 
microRNA-135b-5p were oncoMiRs (miRs with oncogene effects), while miR-148a-3p, miR- 99a-5p, and let-
7c-3p acted as tumour suppressors in anal cancer patients.
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Introduction

Anal cancer is a rare disease at each cancer center, but 27 000 
patients are diagnosed with this cancer globally each year, and 
the incidence is rising [1, 2]. The treatment is based on clinical 
and radiological examinations as the basis for staging according 
the TNM system [3, 4]. The standard treatment is radiation com-
bined with mitomycin C or cisplatin and a pyrimidine (5-fluoro-
uracil (5-FU) or capecitabine) with surgery as salvage treatment 
[4, 5]. More than 90% of the tumours are associated with human 
papilloma virus (HPV) infection and the prognosis is worse for 
higher viral loads [6, 7]; however, the HPV negative tumours still 
have the poorest prognosis [8, 9]. Tumour control is usually 
achieved for the early stages, but the locally advanced tumours 
have a relatively poor prognosis with about 50% long-term sur-
vival [3]. Despite being easily accessible for tissue sampling, the 
genetic landscape of anal cancer is not well-characterized. 

It is now recognized that microRNAs (miRs) influence the 
growth of cancer by regulation of messenger RNA (mRNA) for 
50–60% of all genes, serving as oncogenes (oncoMiRs) or 
tumour suppressor microRNAs (suppressor MiRs) [10]. We have 
earlier shown that miR-15b modulates the cell cycle regulation 
by HPV stimulation of E2F in anal cancer [11]. To our knowledge, 
the present study is the first global analysis to decide the role of 
microRNA expression in anal cancer patients. 

Material and methods

Patients

Anal cancer patients were recruited at the Department of 
Oncology, Haukeland University Hospital, from September 2003 
to April 2011. We included 28 patients with squamous cell can-
cer and one with cloacogenic cancer, but adenocarcinomas 
were excluded. A total of 31 patients were included with the 
median age of 63 years (range: 28–87). Two patients were 
excluded due to insufficient RNA quality, leaving nine men and 
20 women for analysis. For the eligible patients, the primary 
tumour was localized in the anal canal in 19 patients and in the 
perianal region in the remaining 10 patients. The clinical workup 
included proctoscopy, computed tomography (CT) of chest, and 
abdomen and magnetic resonance imaging (MRI) of the pelvic 
area. The patients were originally classified according to the 
TNM 4th edition [12], which has T and N classification almost as 
identical as the TNM 8th edition [3, 13]. Skin squamous cell can-
cers within 5 cm from the anal verge were also treated as anal 
cancers, in accordance with the TNM 8th classification. The T cat-
egories are shown in Table 1. For stage classification, we used 
the TNM 7th edition [14]. Fourteen patients had no nodal spread, 
and 15 had nodal spread, but none had distant metastases. The 
patients were treated according to Nordic Anal Cancer Group 
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(NOAC) protocols 3, 5, and 7; all clinical data were drawn from 
the patient’s primary journals [5, 15]. Radiation dose to the pri-
mary tumour and involved nodes varied between 54 and 60 Gy 
according to stage. In early stages, one patient was treated with 
radiation alone (54 Gy) and one patient had surgery alone; none 
of these had a recurrence. Lymph node regions without evi-
dence of tumour tissue received a radiation dose of 42–46 Gy, 
except for one T1N0 tumour where elective inguinal lymph node 
irradiation was omitted. Chemotherapy was given either as one 
or two courses of 5-FU and mitomycin C concurrent with the 
radiation or cisplatin and 5-FU were given as two cycles prior to 
radiation and the third cycle concurrent with radiation (10 
patients). 

The follow-up was scheduled every 6 months for 5 years by 
an oncologist or a surgeon with clinical examination, rectoscopy 
if feasible, blood counts, chest X-ray, and ultrasound of the 
abdomen with additional CT or MR examination when clinically 
indicated. The median follow up was 7 years (range 0.5–14.5 
years) with one third alive at 10 years follow-up.

Biopsies and RNA extraction

Biopsies from anal cancer patients were flash frozen in liquid 
nitrogen and stored at -80°C until further processing. For RNA 
extraction, we used the AllPrep DNA/RNA/miRNA Universal 
Kit (Qiagen PN 80224). Briefly, approximately 20 mg of frozen 
tissue was disrupted and homogenized in 600 µL RLT lysis 
buffer by TissueLyzer LT (Qiagen) at 50 Hz for 7 min. Further, 
the homogenized lysate was processed according to the 
manufacturer’s protocol, including an on-column DNase 
digestion (RNase-Free DNase Set, Qiagen# 79254). Total RNA 
was eluted in 50 µL nuclease-free water. Total RNA was quan-
tified by the OD260 on the NanoDrop2000 spectrophotome-
ter, and the quality was assessed using Agilent RNA 6000 
Nano Assay using Agilent Bioanalyzer. The RNA samples were 
stored at −80oC. 

MicroRNA sequencing

Libraries were prepared from 100 ng total RNA using the 
QIAseq miRNA Library Kit (Qiagen). Adapters containing UMIs 
were ligated to the RNA before converting RNA to cDNA. 
Amplification consisted of 16 polymerase chain reaction (PCR) 
cycles. Library quality control was performed using the 
TapeStation 4200 (Agilent) prior to pooling in equimolar ratios 
and sequencing on a NextSeq500 instrument at Qiagens 
Sequencing Facility (Hilden Germany). Raw data were de-mul-
tiplexed and FASTQ files were generated using the bcl2fastq 
software (Illumina Inc.). The quality of the FASTQ files was 
assayed using the FASTQC tool. Annotations of the obtained 
sequences were conducted using GRCh37 and miRbase20 as 
references. Adapter sequences were trimmed using Cutadapt 
(1.11), and reads were mapped using Bowtie (2.2.2). For align-
ing reads to miRbase, the criterion was to have a perfect match 
to the reference sequence. Regarding mapping to the genome, 
one mismatch was allowed in the first 32 bases of the read 
sequence. No indels were allowed. In total, 14.2 million reads 
were obtained for each sample.

Differential expression analysis

The count matrix was then globally analyzed using the 
R-package DEseq2 with mean expression related to complete 
clinical response (cCR) to primary treatment versus residual 
tumours with fold change (FC) above 1.5 (or below 0.67) with an 
uncorrected p-value < 0.05, and a similar procedure using the 
endpoint progression or recurrent disease against no evidence 
of disease (NED) also with FC < 0.67 or FC > 1.5 and p-value < 0.05 
[16]. The microRNAs with rowSum (total row count for all sam-
ples) above 150 in at least one group leaving out very lowly 
expressed microRNAs, were then selected for final analysis of 
time to progression or recurrence during follow-up (TTP), and 
cancer-specific survival (CSS) using IBM SPSS 26 package (IBM 
Corp., Armonk, NY, USA). The number of MiRs loaded into the 
DEseq2 analysis was 1012 and 22 were identified as differentially 
expressed.

Table 1. Patient characteristics for the 29 patients where pre-therapy 
biopsies were analysed for microRNA expression. 

Sex
 Male 9
 Female 20
Age
 Years 63.0 (range 28.0–87.0)
Location
 Anal canal 19
 Anal margin 10
Size
 Median (cm) 5.5 (range 1.9–12.0)
T-stage
 T1 1
 T2 13
 T3 8
 T4 7
N-stage (TNM 4) 
 N0 14
 N1 6
 N2 5
 N3 4
Stage (TNM 7)
 I 1
 II 11
 III A 7
 III B 10
 IV 0
Treatment
 RT and FuMi 17 (*2 also surgery)
 RT and CiFu 10
 RT alone 1
 Surgery alone 1
High-Risk HPV
 Positive 23
 Negative 6

TNM classification according to 4th edition, stage according to 7th edition. 
Chemotherapy was administered according to the standard combination of 
fluorouracil and Mitomycin C (FuMi) and cisplatin and fluorouracil (CiFu).
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Target enrichment of MiRs

Experimentally validated targets for the five MiRs found to be 
prognostic markers were identified using the interactive web 
tool MIENTURNET [17] with targets from the miRTarBase [18]. 
The thresholds in the MIENTURNET enrichment analysis tool 
were set to (1) minimum one miRNA-target interaction and (2) 
adjusted p-value (FDR) 0.15. The list of identified targets was 
imported into the R-package clusterProfiler for enrichment anal-
ysis and graphic results production [19]. Graphical figures were 
produced and edited using Affinity Designer (version 
1.10.1.1142., Serif ).

HPV testing

HPV was detected using the HPV (High Risk) TaqMan PCR Kit 
(Norgen Biotek Corporation, PN TM32200) according to the 
manufacturer’s protocol. The kit detects HPV types 16, 18, 31, 33, 
35, 39, 45, 51, 52, 56, 58, 59, and 68. Briefly, 3 µL of patient DNA 
was added to a total volume of 17 µL MDx TaqMan 2X PCR 
Master Mix, nuclease free water, and 2 µL HPV (High Risk) Primer 
Probe Mix. The PCR conditions were 95°C for 3 min for denatura-
tion, followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. 
LightCycler 480 using the LightCycler v.1.5 software was used 
for detection. Positive and negative controls were included as 
per instructions from the manufacturer. A resulting Cq-value 
< 35 with exponential amplification curves for HPV and internal 
control was considered positive.

Statistics

The primary endpoint TTP was defined as the time from biopsy 
date to residual progressive tumour after therapy or diagnosis 
of local or distant recurrences presented in the figures as pro-
gression free survival (PFS). For calculation of CSS, death as a 
result of anal cancer was recorded as an event and survival was 
censored at death as a result of any cause other than anal can-
cer or end of follow-up. Deaths as a result of anal cancer or 
complication to therapy were marked as an event, deaths due 
to other causes including cancers were censored. Survival was 
estimated by the Kaplan Meier actuarial method, and differ-
ences were tested by the log-rank test using IBM SPSS 26. A 
two-tailed p-value below 0.05 was considered statistically 
significant. 

The expressions of the microRNAs and HPV were 
dichotomized as low below and high above the median value, 
and correlations tested by the Chi-square test.

The study received ethics approval from the Regional Ethics 
Committee (REK IV Sak200/2000) and all patients gave their 
written informed consent to participate.

Results

A total of five patients (17%) had as expected uncertain residual 
local disease at follow-up 1–3 months after primary radiation 

and chemotherapy. Progression was observed in seven of 29 
anal cancer patients (Local progression 2, local and distant 2, 
pulmonary metastases 1, multiple sites 2). Five deaths were a 
result of anal cancer and one occurred due to complication of 
therapy for recurrence.

High-risk HPV was documented in 79% of the patients 
(Table 1), with four male and two female patients having HPV-
negative tumours. Male sex was associated with recurrence 
(P = 0.016), but not initial clinical response (P = 1.00). Three of six 
patients with HPV negative tumours, and only three of 23 HPV 
positive tumours progressed. The PFS at 10 years in HPV positive 
patients was 87.5% (95% confidence interval [CI]: 74.2–100) and 
50.0% (95% CI: 10.0–90.0) in HPV-negative patients (p = 0.09), 
respectively. HPV expression was not associated with high or 
low expression of any of the microRNAs with prognostic impact 
as analyzed by the Chi-square test.

Twenty-two unique microRNAs satisfied the expression 
criterion for initial cCR, and eight microRNAs satisfied the 
criterion for association with recurrence. All these microRNAs 
were further analyzed for their prognostic impact using Kaplan 
Meier analyses for TTP and CSS. 

MiR-1246

MiR-1246 was 2.4-fold higher in patients with residual tumours 
or relapses than those without any residual tumour or relapse 
after chemoradiation. MiR-1246 was not significantly differently 
expressed in relation to T stage or N stage. However, MiR-1246 
was significantly higher expressed in men, eight with high 
expression and only one in the low group, versus for women 
who 12 had low expression and eight high expressions 
(p = 0.020). The PFS for patients with expression below median 
was 100% at 10-years follow up, in contrast to those with higher 
expression where PFS at 10-years was 55.6% (95% CI: 30.9–80.3), 
p = 0.004, see Figure 1A. The corresponding values for CSS were 
100% at 10-years with low expression and 67.7% (95% CI: 46.1–
89.3) at 5-years and 60.2% (96% CI: 35.1–85.3) at 10-years follow 
up, p = 0.009 (Figure 1B). 

MiR-135b-5p and miR-135b-3p

The global analysis revealed a 2.8-fold higher expression of MiR-
135b-5p in patients with residual tumours or recurrence com-
pared to those where the cancer was controlled by radiation 
combined with chemotherapy. MiR-135b-5p expression was 
marginally higher expressed in T3-4 tumours compared with T1-2 
tumours (p = 0.049), but there was no association to N-stage or 
sex. Of those with low expression only one local recurrence was 
observed after 1.3 years, with 10-year PFS of 92.3% (95% CI: 
80.4–100) and for those above median expression 10-year PFS 
was 59.3% (95% CI: 34.0–84.6), p = 0.026, Figure 1C. The corre-
sponding CSS for low expression of MiR-135b-5p was 100% at 
10-years, and for high expression it was 57.8% (95% CI: 31.7–
83.9) at 5 and 10-years, (p = 0.006, Figure 1D). 
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MiR-148a-3p

MiR-148a-3p was significantly higher expressed in early 
tumours, T1-2, than the advanced tumours T3-4, p = 0.005. There 
was no relation of expression to N-stage or sex. For patients with 
high tumour expression of MiR-148a-3p PFS at 10 years was 93.3 
% (95%CI 80.8-100) and 53.6% (95%CI 25.4-81.8) for those with 
low expression, p = 0.025 (Figure 2A). The corresponding CSS 
were 92.3% (95%CI 77.8-100) and 42.1% (95%CI 7.4-76.8), 
respectively, p = 0.048 (Figure 2B). These results indicate that 
miR-148a-3p is a tumour-suppressing microRNA. 

MiR-99a-5p 

The expression of MiR-99a-5p was 2.1-fold higher and for MiR-
99a-3p 2.5-fold higher in the group with complete response 
compared to the group without complete response after radi-
ochemotherapy. The levels of MiR-99a-5p and miR-99a-3p were 
not related to T-stage, N-stage, or sex. High expression of MiR-
99a-5p was associated with 10-year PFS of 92.9% (95% CI: 79.4–
100) versus 57.1% (95% CI: 31.2–83) for the low expression 
group, p = 0.016 (Figure 2C). For CSS, high expression of MiR-
99a-5p was associated with 10-year survival of 88.9% (95% CI: 
68.3–100), and for low expression 10-year CSS was 53.6% (95% 
CI: 20–84.2), p = 0.038 (Figure 2D). 

Let-7c-3p 

Let-7c-3p was significantly higher expressed in lower stages (T1-2) 
compared to higher stages (T3-4), four patients in the low let-7c-3p 
group and 10 with high let-7c-3p in lower stages versus 10 with 
low expression and five with high expression in advanced stages, 
p = 0.040, but there was no relation of expression and N stage or 
sex. PFS at 10-years was 92.9% (95% CI: 79.4–100) with high 
expression and 57.1% (95% CI: 31.2–83.0) (p = 0.016) with low 
expression of let-7c-3p (Figure 2E). The corresponding values for 
CSS at 10-years were 92.3% (95% CI: 55.8–100) and 61.9% (95% CI: 
35.2–88.6), p = 0.036, respectively (Figure 2F). The data indicate a 
tumour suppressive role of Let-7c-3p.

Functional enrichment

To explore the biological function of the five MiRs identified 
as prognostic markers, their most prominent targets were 
identified in the miRTar database. Schematic network of the 
targets and enriched target KEGG pathways are shown in 
Figure 3. Our analysis identified enrichment for proteins in 
several KEGG pathways associated with other malignancies, 
for example, microRNAs in cancer (hsa05206), hepatocellular 
carcinoma (hsa05225), gastric cancer (hsa05226), colorectal 
cancer (hsa05210), breast cancer (hsa05224), basal cell 

Figure 1. Progression free survival (PFS) and cancer specific survival (CCS) for miR-1246 (A and B), microRNA – 135b-5p (C and D). The Kaplan–Meier curves 
show the effect of expression of each microRNA above (High) or below (Low) the median expression in anal cancer tissue.
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carcinoma (hsa05217), and myeloid leukaemia (hsa05220 and 
hsa05221). Two pathways associated with virus infection were 
found to be enriched HPV infection (hsa05165) and human 
cytomegalovirus infection (hsa05163). Targets in the Wnt sig-
nalling pathway (hsa04310), Hippo signalling pathway 
(hsa04390) and mTOR signalling pathway (hsa04150) were 
also enriched.

Discussion

The present study investigated the expression profile of microR-
NAs in anal cancer and possible prognostic micoRNAs were 
identified. High expressions of MiR-1246 and MiR-135b-5p were 
associated with poor prognosis. On the other hand, high 

expressions of MiR-148a-3p, MiR-99a-5p, and let-7c-3p were 
found to be associated with better prognosis. Anal cancer is a 
rare disease with no public datasets on microRNAs available for 
confirmation of our findings. We therefore related our findings 
to published data from clinical- and preclinical studies from 
other cancer types as an indirect support. 

In our series of anal cancer, no patient with low expression of 
MiR-1246 relapsed or died in contrast to the group where this 
miR was high. In SiHa squamous cell cervical carcinoma cultures, 
downregulation of MiR-1246 inhibited proliferation and tumour 
growth, increased apoptosis, blocked invasion in Matrigel, and 
caused cell cycle arrest in G1/S phase block at G1/S [20]. Higher 
tissue expression of MiR-1246 in cervical cancer, another HPV-
induced squamous cell cancer, was similarly associated with 

Figure 2. Effect on PFS (A, C, and E) and CSS (B, D, and F) for miRs identified as tumour suppressors. MiR-148a-3p (A and B), miR-99a-5p (C and D), and 
let-7c-3p (E and F) in low versus high expression groups. The threshold for categorization as ‘Low’ or ‘High’ was the median expression for the specific miR.
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lymph node metastases as we report for anal cancer [21]. 
Exosomal MiR-1246 induced cell motility and invasion also in an 
oral squamous cell carcinoma cell line [22]. In a lung cancer 
model, MiR-1246 target mRNA for GSK-3β and β-catenin, thus 
regulating the Wnt-pathway [23]. MiR-1246 has higher 
expression in malignant melanomas than normal tissues and is 
associated with invasion and metastasis [24]. In melanoma cells, 
MiR-1246 inhibited BAX but stimulated Bcl2, thus inhibiting 
apoptosis and hepatocyte nuclear factor 3-β/FOXA2 which is 

involved in embryonic development and activates liver genes. 
In colorectal cancer MiR-1246 promotes metastases via the 
MAPK pathway [25]. MiR-1246 is also a target for p53 [26]. For 
colon cells with gain of function mutations of p53 it is shown 
that the cells shed exosomes with MiR-1246 which stimulates 
macrophages to become type 2 macrophages stimulating the 
clinical growth of colon tumours [27]. Also, hypoxic glioma cells 
delivered exosomal MiR-1246 which induced M2 macrophages 
[28]. Exosomal MiR-1246 may be a smaller degradation product 

Figure 3. Target analysis of the prognostic microRNAs. (A) Network showing common targets among the microRNAs in the analysis. (B) Pathway analysis of 
the prognostic miRs showing the KEGG pathways identified as enriched. The miRs enriched in each pathway are indicated.
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of a component of the spliceosome U2 (RNU2-1) in human 
cancer cells [29].

It is of special interest that exosomes containing MiR-1246 
have been measured in serum and plasma from patients with 
cervical cancer [20], breast cancer [30, 31], hepatocellular cancer 
[32, 33], pancreatic cancer [34], gastric cancer [35], colorectal 
cancer [36], squamous cell esophageal carcinoma [37, 38], and 
prostate cancer [39]. Generally higher levels indicated poor 
prognosis.

MiR-135b-5p is upregulated in several gastrointestinal cancer 
types like gastric cancer [40, 41, 42], pancreatic cancer [43, 44], 
esophageal cancer [45], lymphomas [46], peripheral nerve 
sheath tumours [47], oral squamous cell cancers [48], and colon 
cancer [49, 50]. However, MiR 135b-5p is also reported to be 
lower in some tumours (i.e. pancreatic cancer) [51]. Its role may 
depend on the microenvironment, but most data support our 
finding of its role as an oncoMiR in anal cancer. Experimental 
data show further that miR-135b-5p targets the Wnt pathway 
through its inhibition of adenomatous polyposis coli (APC)  
[45, 46, 47, 49, 51] and Frizzled-1 [41], but also other targets like 
SFRP4 [42] and KRAS are reported [52]. 

In accordance with our findings in anal cancer patients, MiR-
148a-3p has been reported as a tumour suppressor in several 
cancer types except osteogenic sarcoma and some gliomas [53]. 
This includes gastric cancer [54], oesophageal cancer [55, 56, 57], 
pancreatic cancer [58], non-small-cell lung cancer [59], laryngeal, 
and oral cancer [60, 61]. Low miR-148a-3p expression correlated 
with more aggressive features both in vitro and in hepatocellular 
patients where increased levels inhibited migration, invasion, 
and proliferation [62]. MiR-148a-3p targets known oncogenes 
and important signal pathways for tumour growth like Wnt and 
epithelial-mesenchymal transition (EMT) [58, 63], RAS-like 
protein1 (RALBP1) [60], DNMT1 [57, 61], c-Myc [63], SMAD2 [62], 
c-Met, snail, and other targets [64, 65]. MiR 148a-3p seems also to 
stimulate PD-L1 expression and low levels therefore contribute 
to environmental immunosuppression [66]. The presented data 
indicate a central role of miR-148a-3p in tumour growth.

Both the guide string miR-99a-5p and the complementary 
string miR-99a-3p were downregulated and associated with 
poor prognosis in head and neck squamous cell carcinomas [67, 
68, 69], lung adenocarcinomas [70], breast cancer [71], and 
prostate cancer [72]. In poorly differentiated endometrial 
carcinoma tumours miR-99a-5p was downregulated and 
associated with reduced survival [73]. High serum levels of miR-
99a-5p are presented as a possible positive biomarker in breast 
and gastric cancer [74, 75]. Several targets have been identified 
for this suppressor miR, that is, FAM64A, TIMP4, DNMT3B, and 
MCM4 [67, 70].

Let-7 is a family of MiRs discovered in 2001 which consists of 11 
members [76, 77]. The let-7 family is downregulated in many 
cancer forms and reduced expression is associated with 
proliferation, invasion, and metastases and poor prognosis. The 
RNA-binding proteins LIN28A and LIN28B are direct targets of the 
let-7 family and are also inhibitors of let-7 biogenesis thus forming 
a double negative feedback loop [77]. A small molecule inhibitor 
of LIN28 increased let-7 and thereby reduced expression of PD-L1 

and thus lowered immunosuppression in an experimental system 
[78]. Lin-7 also targets the high mobility group AT-Hook 2 
(HMGA2), a transcriptional factor functioning as an oncogene [79, 
80, 81], especially in less differentiated cancers [82]. Experimental 
studies further show that let-7 family members control cell cycle 
molecules and thereby proliferation [83]. In laryngeal cancer, let-
7c-5p was downregulated in tumours and controlled the Pre-B-
cell leukaemia homeobox transcription factor 3 (PBX3) [84]. In 
cervical cancer, the same miR was also identified as a tumour 
suppressing molecule controlling p16(INK4A) or CDKN2A, which 
are well-known factors in anal cancer [85]. In small cell cervical 
cancer let-7c is associated with more advanced tumour 
presentation and high expression is associated with very good 
prognosis in contrast to low expression [86]. Let-7c and MiR-99a 
cluster together at chromosome 21 of the human genome and 
their expressions have been shown to be similar in oral, 
esophageal, and bladder cancer [86, 87, 88, 89]. We also observed 
similar effects by these two microRNAs in our anal cancer patients. 
The proto-oncogene Myc which is an important regulator of 
many cellular processes, including proliferation, cell growth, 
metabolism, cell adhesion, motility, and angiogenesis, inhibits let-
7c, which again inhibits Myc production in a feedback loop [90, 
91, 92]. Let-7 stimulates degradation of PD-L1 and therefore 
suppresses immune suppression in head and neck squamous cell 
carcinomas and reduces survival [93]. 

Our study has several limitations like having a small number 
of tissue samples, and low number of recurrences and deaths 
due to anal cancer and lack of confirmation in independent 
analyses from other anal cancer cohorts and confirmation by 
laboratory tests. We cannot exclude that some of our identified 
microRNAs have a relation to the HPV status due to our limited 
sample size, especially since a relation to HPV is shown in the 
functional enrichment (Figure 3). However, the many reports of 
similar results in other cancer types support the findings of a 
prognostic clinical role in our study. 

In conclusion, we have identified several oncoMiRs (miR-
1246 and miR-135b-5p) and suppressor MiRs (miR-148a-3p, 
miR-99a-3p and Let-7c-3) as new potential prognostic factors in 
anal cancer patients. Hopefully, this report can stimulate more 
work that can confirm our first finding of MiRs as potential 
biomarkers in anal cancer. 

Ethics declaration

The study was conducted in accordance with the recommenda-
tions of The National Ethics Committee of Norway and Health 
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Data availability
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