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PATHOGENESIS OF IRRADIATION-INDUCED COGNITIVE DYSFUNCTION 

OLUBUNMI K.  ABAYOMI 

Neurocognitive dysfunction is a common sequela of cranial irradiation that is especially severe in 
young children. The underlying mechanisms of this disorder have not been described. The present review 
describes the role of the hippocampus and the anatomically related cortex in memory function and its 
marked susceptibility to ischemic and hypoxic injury. Based on studies of animal models of human 
amnesia and histopathological findings in the irradiated brain, the neurocognitive sequela of cranial 
irradiation can be seen to be mediated through vascular injury, resulting in ischemia and hypoxia in the 
hippocampal region. Recognition of the site and mechanisms of this injury may lead to the development 
of techniques to minimize the risks. 

Cognitive dysfunction is a major sequela of cranial 
irradiation (1 -5 ) .  Although the prevalence of this injury is 
difficult to determine, the incidence is substantial and 
younger children are particularly susceptible (6). This 
problem is well recognized among children who received 
cranial irradiation for acute lymphoblastic leukemia and 
solid brain tumors (7, 8) and has led to changes in the use 
of radiotherapy in the management of children presenting 
with leukemia and brain tumors. Furthermore, there are 
new reports implicating irradiation of extracranial malig- 
nancies such as carcinoma of the nasopharynx as a 
causative factor in the development of cognitive disorders 

While cranial irradiation is believed to be the major 
cause of post-treatment intellectual deterioration, ( 1  1 - 15) 
the pathogenetic mechanisms of this disorder have not 
been described. A review of the pathophysiology of mem- 
ory and learning suggests that the site of injury is the 
medial temporal lobe cortex and that cranial irradiation- 
induced vascular damage, characterized by intimal prolif- 
eration and narrowing of the lumen with resultant 
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ischemia and hypoxia, results in impairment of memory 
and learning (16-18). 

The purpose of this review is to describe the mechanisms 
of development of irradiation-induced cognitive dysfunc- 
tion. An understanding of the pathogenetic mechanisms 
may make possible the development of techniques of irra- 
diation that will prevent or reduce the incidence and 
severity of this sequela. 

The nature of vascular irradiation damage 

The target cells in the walls of blood vessels for radiation 
effects are the endothelial cells and smooth muscle cells (19). 
Studies of irradiated vessels have shown that there is a t  first 
a dose-dependent reduction in the number of endothelial 
cell nuclei followed by an attempt a t  endothelial regenera- 
tion (19-22). This is manifested by the appearance of 
groups of endothelial cells which partially or totally occlude 
the lumen of the vessel. The other target cells, the smooth 
muscle cells, also manifest a dose-related atrophy of the 
muscle cells at varying time intervals following irradiation. 
This results in hyaline and fibrinoid changes which lead to 
alterations in the vascular architecture (23). The conse- 
quence of these changes is the occlusion or reduction in the 
luminal diameter of the vessels and a reduction in the size 
of the capillary bed. These characteristic histopathological 
changes have been observed in the irradiated brain (24,25), 
and have been found to be most pronounced in the 
hippocampal region, where the vasculo-occlusive changes 
result in ischemia and hypoxia (23). 
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The consequences of vascular damage in the medial 
temporal lobe 

The importance of the hippocampal region for normal 
memory was first elucidated in 1957 by Scoville & Milner 
(16). They found that patients who underwent bilateral 
medial temporal lobe resection, extensive enough to  dam- 
age portions of the hippocampus manifested a persistent 
disturbance of memory. There was a correlation between 
the extent of destruction to  the hippocampal complex and 
the degree of memory impairment. The role of the 
hippocampus in memory was further confirmed by a study 
of an amnesic patient who, after an episode of global 
ischemia, developed severe memory impairment in the 
absence of other cognitive dysfunction. At autopsy, histo- 
logical examination of the brain revealed circumscribed 
bilateral lesions involving the hippocampus. Moreover, 
investigations of amnesic patients using high resolution 
magnetic resonance imaging (MRI)  have shown that these 
patients exhibit shrunken and atrophic hippocampal re- 
gion, thus demonstrating the association of damage to the 
hippocampus and disorders of memory (26). 

The availability of an animal model of human amnesia 
has made it possible to carry out systematic investigations 
of the anatomical structures important for memory (27, 
28). Monkeys subjected to  global ischemia demonstrated a 
marked vulnerability of the hippocampus to  ischemia and 
were found to develop bilateral cell loss in the CA 1 field of 
the hippocampus. On tests of memory function these mon- 
keys performed similarly to monkeys with surgically pro- 
duced damage to  the hippocampus (29). 

Furthermore, bilateral lesions of the medial temporal 
lobe that approximate the damage sustained by an amnesic 
patient have been produced in monkeys (30, 31). On 
testing, these monkeys exhibited severe impairment on a 
number of memory tasks. This lesion reproduced many 
features of memory impairment suffered by the amnesic 
patient. Other studies employing a direct surgical approach 
to the hippocampus using a combination of stereotactic 
neurosurgery and MRI have provided further evidence for 
the specific role of the hippocampus in memory function 
(32). These investigations provide a clear demonstration of 
the importance of the hippocampus as the major compo- 
nent of the medial temporal lobe memory system, and its 
susceptibility to ischemic damage. 

Mechanisms of irradiation-induced cognitive dysfunction 

Largely on the basis of studies of irradiated brains and 
investigations in monkeys and rodents subjected to global 
ischemia, the hypothesis is presented that postirradiation 
cognitive dysfunction results from ischemic damage to the 
hippocampus. Evidence in support of this hypothesis 
builds on the findings that the irradiated brain manifests 
histopathological changes that closely mimic those found 

in the brain following global ischemia (18, 24, 33). These 
changes are most pronounced in the hippocampal region, 
an area believed to be crucial for memory and learning. 
Moreover, patients with hypoxic-ischemic brain injury 
manifest several neuropsychological features, in common 
with patients with postirradiation cognitive dysfunction. 
These similarities suggest very strongly that the patho- 
genetic mechanisms of postirradiation cognitive impair- 
ment are similar to those that follow global ischemia. 
Studies from a rodent model of global ischemia are also 
consistent with this view (19). 

Indirect evidence suggesting the medial temporal lobe 
cortex as the site of injury responsible for postirradiation 
cognitive deterioration has been provided by the observa- 
tion that some long-term survivors following irradiation 
for cancer of the nasopharynx manifest intellectual impair- 
ment (10, 35). When these patients were given a battery of 
tests to  assess their intellectual function, they showed 
significant cognitive deficits in recall of general informa- 
tion from memory, impaired comprehension, and impaired 
analytic and abstract thinking. Some of these patients on 
follow-up brain computed tomography (CT) manifested 
hypodense areas in the inferomedial region of the temporal 
lobe. One of these patients who underwent a post mortem 
examination demonstrated the characteristic histopatho- 
logical features of delayed vascular irradiation damage, 
most prominent in the medial temporal lobe region. On 
review of the treatment portals for these patients it was 
found that the common feature among the group of pa- 
tients manifesting post-irradiation cognitive impairment, 
was the inclusion of the infero-medial portion of the 
temporal lobes in the high dose volume. Since none of 
these patients received chemotherapy and none showed 
signs of recurrent disease it was concluded that the cause 
of the sequela of cognitive dysfunction was irradiation 
damage to the medial temporal lobe. 

Furthermore, a study carried out on a cohort of patients 
treated for carcinoma of the nasopharynx detected CT 
abnormalities in the temporal lobes of patients whose 
temporal lobes could not be shielded because of the extent 
of disease. Some of these patients manifested deterioration 
of memory and had CT abnormalities that corresponded 
to the volume of temporal lobe included within the target 
volume. In contrast, the patients whose treatment tech- 
niques did not include the temporal lobes in the high-dose 
volume did not develop this complication (36). 

Clinical implications 

As a result of the increasing realization of the severity of 
neurocognitive sequela of cranial irradiation there has 
been a major shift away from employing irradiation in the 
management of brain tumors in children (37). In infants 
and very young children with medulloblastoma there is a 
move to  delay or omit irradiation (37-39). These children 
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are treated postoperatively with chemotherapy, and may 
receive cranial irradiation when they are older and there- 
fore considered less susceptible to radiation-induced neu- 
rocognitive impairment. Though chemotherapy has been 
shown to be effective in treating medulloblastoma, it lacks 
the long standing track record of efficacy established by 
irradiation. There is thus a danger that the omission, or 
delay, in the use of irradiation for medulloblastoma may 
be detrimental to  the treatment outcome in these patients 
(40, 41). 

Recognition of the site and the underlying mechanisms 
of the injury responsible for the neurocognitive dysfunc- 
tion that follows cranial irradiation may lead to the design 
of treatment techniques that will minimize the risk of this 
sequela. Thus, treatment fields and techniques can be 
selected such that the dose to the medial temporal lobe 
region is reduced. This can be effected by decreasing the 
dose to supratentorial structures in patients in whom total 
tumor resection has been achieved while delivering full 
dose to the posterior fossa. To decrease the late neuropsy- 
chometric morbidity associated with cranial irradiation, 
attempts have been made to exclude the supra tentorial 
structures from the radiation field or to reduce the dose to  
this area while maintaining the dose to the posterior fossa. 
Tomita & McClone (42) reported that a reduction in 
dosage t o  the supratentorium in selected patients with 
medulloblastoma was not associated with increased recur- 
rence. However, other large studies have demonstrated an 
increase in relapse rates when total neuraxis dose was 
reduced (43, 44). Thus it appears that the conventional 
dose to the brain should be maintained while studies are 
carried out to determine the optimum dose to  the supra- 
tentorium for tumor control, and the feasibility of lower- 
ing the dose without compromising tumor control. There 
are reports on children who received cranial irradiation for 
acute lymphoblastic leukemia and primitive neural ecto- 
dermal tumors demonstrating dose dependent declines in 
intelligence quotient (IQ), with children receiving 32-40 
Gy to the whole brain manifesting more severe decline in 
IQ than those who received 18-24 Gy. (45) Furthermore, 
there is experimental evidence suggesting that the severity 
and extent of vascular irradiation damage is dose-depen- 
dent (23). Partial shielding of the medial temporal lobe to 
decrease the dose many lower the severity of neurocogni- 
tive sequela without increasing the risk for tumor recur- 
rence. 

A new technique of treatment suggested for reducing the 
neurocognitive sequelae of cranial irradiation for child- 
hood medulloblastoma is the use of the partial transmis- 
sion block which allows the whole brain and the postcrior 
fossa to  receive the desired target dose but with reduced 
fraction size (46, 47). Preliminary results appear promising; 
whether this technique will result in improved neurocogni- 
tive sequelae while maintaining a high tumor control rate 
remains to be seen. 

In the management of other brain tumors, techniques 
designed to deliver high dose in the tumor volume while 
sparing the temporal lobe may reduce the incidence of 
neurocognitive dysfunction. The availability of improved 
imaging techniques such as high resolution CT and MRI. 
and the use of conformal radiotherapy techniques should 
make it possible to  deliver the required curative dose to  the 
tumor volume and spare the temporal lobe from the high 
dose-volume. Moreover, recognition of the susceptibility of 
the temporal lobe to radiation damage should lead to  
increased attempts to shield it or exclude it from the high 
dose volume when irradiating tumors of the pituitary 
region, the nasopharynx and paranasal sinuses (47). 

Summary 

Survivors of cranial irradiation manifest severe neu- 
rocognitive dysfunction which has a profound effect on the 
quality of their survival. This has led to a major shift away 
from using radiotherapy, a modality of proven efficacy in 
the management of brain tumors. The availability of ani- 
mal model of human amnesia has made possible investiga- 
tions of the anatomical structures important for memory. 
These are located in the medial temporal lobe and consist 
of the hippocampus together with adjacent anatomically 
related cortex. Studies have shown that the hippocampus is 
profoundly sensitive to ischemia and hypoxia. These stud- 
ies strongly suggest that ischemic damage to the hippocam- 
pus impairs memory function in monkeys as it does in 
humans. Furthermore, there is evidence to  suggest that the 
pathogenetic mechanism of postirradiation intellectual im- 
pairment is similar to that following global ischemia and 
that irradiation damage is mediated through vascular 
changes which result in ischemia and hypoxia in the 
hippocampal region. Recognition of the site and mecha- 
nism of injury has the potential to lead to the development 
of techniques that will spare the structures important for 
memory functions thus reducing the neurocognitive se- 
quela of cranial irradiation. This may lead to a reassess- 
ment of policies modifying the role of irradiation in the 
management of brain tumors in children. 
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