
CONTROLLED CLINICAL TRIALS IN CANCER RESEARCH 

EVA SKOVLUND 

Knowledge of important aspects of the design and analysis of clinical trials is essential to clinical 
researchers and readers of medical literature. A brief description of proper trial design, including the 
contents of a trial protocol, as well as different strategies to avoid bias, is given. The concept of 
p-values is explained, and some commonly used statistical analysis methods are mentioned. Statistical 
power is defined, and two useful formulas and examples of estimating sample size are presented. The 
correct interpretation of trial results is emphasized, and misinterpretations and errors that frequently 
occur are dealt with. Various issues regarding multiple significance testing, such as interim analyses, 
multiple endpoints, and subgroup analyses, are addressed. 

The term clinical trial usually refers to any type of 
planned medical experiment involving patients. The ratio- 
nale for performing a clinical trial is to  determine the most 
appropriate treatment for patients with a certain medical 
condition. Results from a sample of patients are used to 
draw conclusions concerning the general population of 
present and future patients. Individual case studies and 
retrospective surveys are not considered as clinical trials. 

The majority of clinical trials deal with various types of 
drug treatment and are often initiated by the pharmaceuti- 
cal industry. However, other forms of treatment such as 
surgery, radiotherapy, and different forms of medical ad- 
vice or patient care can be studied in clinical trials. 

To document the effect of a new therapy in a scientifi- 
cally acceptable way, a series of clinical trials has to  be 
performed. The development of a new drug is divided into 
four different phases. Phase I trials usually include a small 
number of volunteers and are mainly concerned with phar- 
macological aspects such as  safety and drug toxicity. In 
phase I1 small-scale studies of efficacy are performed, and 
suitable doses of the drug are identified. Phase TI1 covers 
large trials comparing the effect of two or more different 
treatments. These trials are used to  document the efficacy 
of a new treatment before applying for marketing autho- 
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rization. Phase IV covers both long-term studies of adverse 
effects after approval, and trials for which marketing is the 
main objective. In what follows, the term ‘clinical trial’ will 
be used synonymously with a phase 111 trial. 

The present paper will deal briefly with important as- 
pects concerning design and analysis of clinical trials. The 
interested reader is referred to introductory textbooks on 
clinical trials ( I )  and practical statistics (2, 3). Two exten- 
sive papers on design (4) and analysis (5) of trials in which 
patients are observed over time are relevant for proper 
planning of cancer trials. 

The CPMP Working Party on Efficacy of Medicinal 
Products (6) has published a European guideline to bio- 
statistical methodology in clinical trials. Relevant princi- 
ples of design and analysis are outlined, and generally 
acceptable approaches to these tasks are described. Some 
approaches which should not be adopted are also men- 
tioned. Detailed specification of methodology is not given. 
The guideline can successfully be applied to  both drug 
trials and clinical trials not involving drugs. 

The trial protocol 

Before conducting a clinical trial, a detailed protocol for 
the study must be written. All aspects of the trial should be 
described. The main features of a clinical trial protocol 
include the objective( s) of the study, study design, patient 
selection (inclusion and exclusion criteria), description of 
study treatments and clinical procedures, methods for eval- 
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uating patient response, randomization, blinding, sample 
size justification, statistical analysis methods, monitoring 
of trial progress, adverse events reporting, protocol viola- 
tions and premature withdrawal, informed consent, and 
administrative responsibilities. 

Trial design 

Most trials are designed to include a certain number of 
patients which is decided in advance. This is called a fixed 
sample design. Sometimes, especially if the planned sample 
size is large, it may be of interest to analyse the data one 
or more times before reaching the planned sample size, and 
to stop the inclusion of new patients if a conclusion 
regarding treatment effect can be drawn. This is referred to 
as performing interim analyses. If the sample size is not 
fixed, but the data are analysed continuously during the 
trial, possibly after each patient responding, and the trial is 
stopped according to predefined stopping rules, it is called 
a sequential trial. 

In order to assess the effect of a new therapy, it must in 
some way be compared with the effect of a standard 
therapy. Two main types of comparative design exist. A 
parallel group design implies that one group of patients 
receives a certain therapy and is compared with another 
group of patients receiving another type of treatment (the 
control group). The term cross-over design means that all 
patients receive both types of treatment during two differ- 
ent periods of time, and the order in which the treatments 
are given differs between patients. Patients are then said to 
act as their own controls, thereby reducing variability. 
With both types of design more than two treatments can 
be compared simultaneously. Cross-over trials generally 
need inclusion of fewer patients than trials employing a 
parallel group design, but their applicability is restricted by 
several assumptions, and they are for this reason not 
frequently used. The main restriction is that in order to 
ensure a fair comparison between two treatments given to 
the same patients in different periods of time, the disease 
under study must be chronic and stable, and the therapy to 
be studied must not be curative. Thus, a cross-over design 
is rarely feasible in cancer studies where a major endpoint 
is often survival or tumour response. The cross-over design 
should not be confused with a parallel group design in 
which patients in a trial are allowed to ‘cross over’ to the 
other study treatment after the treatment they were allo- 
cated to has failed. 

Historical controls 

A common way to avoid the inclusion of a control 
group is by comparing retrospectively patients receiving 
the new therapy with previously treated patients who 
received standard therapy. This latter group of patients is 
commonly referred to as historical controls. A major prob- 

lem with historical controls is to ensure that the compari- 
son is unbiased. If the groups of patients differ with 
respect to other characteristics than the therapy given, it 
cannot be guaranteed that an observed improvement is in 
effect due to the new therapy. Two major sources of bias 
exist; patient selection and change in experimental environ- 
ment. Both types of bias tend to exaggerate the effect of a 
new therapy. 

The historical control group will usually lack criteria for 
patient inclusion, and the investigator may be more restric- 
tive in the choice of patients for the new therapy. As the 
controls were treated earlier, the type of patients available 
may also have changed. The quality of recorded data for 
historical controls tends to be inferior since these patients 
were originally not included in a trial, and retrospective 
collection of information will usually not provide the data 
needed. It may be difficult to ensure that the criteria for 
evaluation of response are the same in the two groups, and 
some aspects of patient management may have changed. 

Randomization 

In order to ensure comparability between treatment 
groups, patients should be randomized to receive one of 
the treatments to be studied. Simple randomization can be 
performed, for instance, by tossing a coin, but usually 
randomization lists are generated by a computer. To avoid 
selection bias, it is important that randomization of a 
patient does not take place until after he or she has been 
included in the trial. The purpose of randomization is to 
guard against systematic differences between treatment 
groups (except the treatments given in the trial). Simple 
randomization does not necessarily result in patient char- 
acteristics being distributed similarly in each treatment 
group, but any differences will be due to chance, and not 
to systematic arrangements made. Hence, standard statisti- 
cal methods such as significance tests are applicable. Even 
if treatment groups by chance do differ considerably, for 
instance on the distribution of age or the proportion of 
women, the analysis is not invalidated. Analysis methods 
which allow for lack of comparability exist. However, 
scientists and readers tend to be more comfortable with 
treatment groups showing similar patient characteristics. 
To achieve similar groups, stratified randomization is often 
used. 

Stratification 

A stratified design is best illustrated by an example. 
When planning the trial a small number of patient charac- 
teristics believed to be essential for treatment outcome 
must be identified. In a breast cancer trial possible prog- 
nostic factors might be oestrogen receptor level ( + / -) 
and tumour size (Tl/T2). Stratification on these two fac- 
tors, each on two levels, yields four (2 x 2) different strata 
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Table 1 

The minimization method in a frial on adjuvant treufment of 
colorectal cancer 

or subgroups. Within each stratum patients are random- 
ized in blocks in order to ensure balance between the 
treatments, A and B, say. A common choice of block size 
is four; in which case six different permutations of two As 
and two Bs exist: AABB, ABAB, ABBA, BBAA, BABA, 
BAAB. Balance between treatments is thus ensured for 
every fourth patient included in the stratum. This concept 
is known as random permuted blocks within strata. 

A drawback of this method is that if the block size is 
known to the investigator, it may, depending on the per- 
mutation of treatments within a block, be obvious at least 
for the last patient included in each block, to which 
treatment group a new patient will be allocated. Thus the 
investigator is not necessarily blind to which treatment the 
next patient will receive before including him or her in the 
trial, and this may lead to bias due to patient selection. 

One should avoid stratification on a large number of 
prognostic factors since the number of strata will increase 
rapidly with the number of factors. By adding a third 
prognostic factor, e.g. N stage on three levels (0, 1 - 3 ,  4 +), 
to the two described above, the number of strata would 
increase from four to twelve ( 2  x 2 x 3) .  The problem with 
a large number of strata is that some of them may remain 
empty or include very few patients, thus potentially jeopar- 
dizing the idea of balance between treatments. 

With an increasing number of strata, balance between 
treatments within each stratum becomes irrelevant. The 
interest will instead lie on ensuring that the proportion of 
patients with a given characteristic is similar in both 
treatment groups. In statistical terms this is referred to as 
balancing the marginal totals. This may be achieved by 
using the minimization method developed by Pocock & 
Simon (7). A short practical description of the method is 
given by Pocock (1) and further details are described by 
White & Freedman (8). Instead of preparing a randomiza- 
tion list in advance, an updated record of treatment assign- 
ments by patient characteristics is kept, and the allocation 
of a new patient to a treatment group depends on his 
characteristics and on the Characteristics of previous pa- 
tients included. Table l illustrates the minimization 
method in a trial on adjuvant treatment of colorectal 
cancer. For simplicity, only two prognostic factors (Dukes’ 
stage and localization of tumour) are included in the 
example. So far 84 patients have been included. If the next 
patient to be included has colon cancer, Dukes’ B, he will 
be allocated to the surgery group, as sum surgery= 
26 + 30 = 56 and sum surgery + chemotherapy = 26 + 
31 = 57. There is not necessarily any true randomization, 
but an element of chance is usually introduced by assign- 
ing the adequate treatment with probability p = 3/4 or 
p = 2 / 3 .  In the example in Table 1 the new patient would 
be randomized to surgery with p = 3/4. The minimization 
method is frequently used in cancer trials (9). 

In multicentre trials the centres entering patients may be 
considered as a factor for stratification in addition to 

Prognostic factor Surgery Surgery + chemotherapy Total 

Dukes’ B 26 26 
Dukes’ C 15 17 

Colon 30 31 
Rectum 11 12 

52 
32 

61 
23 

Total 41 43 84 

relevant prognostic factors. Different hospitals may show 
different response rates due to patient selection and vari- 
ability in experimental environment. With many centres 
the use of randomized blocks within strata will often result 
in an absurdly large number of strata. By using the mini- 
mization method the centre can be included as a factor in 
the same way as other patient characteristics. 

Stratified randomization may require relatively large 
organizational resources. In very large trials stratification 
is unimportant (4). When patient characteristics are not 
readily obtained or there is uncertainty about the relevance 
of possible prognostic factors, stratification should be 
avoided. 

Blinding 

Even when patients are randomized between treatment 
groups the comparison between groups may be distorted if 
the patient or the physician knows which treatment is 
given. Ideally, randomized trials should be made double- 
blind, i.e. neither the patient nor the physician should 
know which treatment the patient is receiving. If no stan- 
dard treatment exists, identically appearing placebo treat- 
ment by some inert substance should be given. If the 
standard therapy is unsatisfactory, as is often the case in 
cancer trials, both patients and physicians tend to be too 
enthusiastic about the new therapy, and knowledge of the 
study therapy given might influence patient response. 

It is often impracticable to blind clinical trials in cancer 
research. In the case of comparison of chemotherapy regi- 
mens, knowledge of treatment allocation is often necessary 
due to toxicity. Dosage regimens may be very different, 
and the use of double dummy techniques, where patients 
receive either treatment A and placebo for treatment B or 
vice versa, may not be possible. Adverse effects may be 
treatment specific and easily recognizable such that blind- 
ing would almost inevitably be broken during therapy even 
if an attempt to perform a double blind trial were made. 
Radiotherapy trials might in theory be blinded by giving 
‘placebo radiation’, but due to costs and the ease of 
breaking the blind, this is not done. Therefore most cancer 
trials suffer from not being blinded, and bias due to 
psychological effects on the patient and in the evaluation 
of response may be inevitable. 



Bias due to psychological effects is not readily over- 
come, but the information given by the physician before 
randomization should be expressed in a way that mini- 
mizes this bias. One way to avoid bias in the evaluation of 
patient response is by keeping the evaluator blinded to 
treatment. The physician evaluating response should thus 
not be part of the treatment team. 

Significance testing 

The purpose of calculating a p-value is to assess the 
probability that an observed difference in treatment effect 
is due to chance only. A small p-value implies that the risk 
of a false positive result (i.e. to conclude that two treat- 
ments differ when they are in fact equal) is small. A real 
difference between treatments is then believed to exist. In 
clinical trials significance tests are usually two-sided, which 
means that if the p-value is small, it may be concluded 
either that treatment A is better than B or that B is better 
than A. If a treatment difference in one direction only (e.g. 
A better than B, but not vice versa) would be of clinical 
interest, a one-sided significance test may be performed. 
Whether to perform a one-sided or a two-sided test must 
be decided before starting the trial. Two-sided tests are 
usually regarded as a ‘gold standard’. 

It is customary to regard p-values lower than 5% as 
statistically signijkant, and the conclusion following the 
significance test will then be that one treatment is in fact 
better than the other. On the other hand, a p-value larger 
than 5% does not prove that two treatments have equal 
effect. Two treatments may actually be different, but this 
might not necessarily be detected by the analysis of patient 
responses. The probability of uncovering a true treatment 
difference is called the power of the test and should ideally 
be high. The power depends on the number of patients 
included. To achieve a high power it is necessary to include 
a large number of patients. 

Sample size 

Power based 

Before conducting a trial it is very important to estimate 
the sample size needed to uncover a difference in treatment 
effect which would be of ciinical importance to detect. The 
estimation of sample size can be illustrated by an example. 
Let the 3-year survival on standard treatment be p, = 40%, 
and let the clinically relevant improvement on the new 
treatment be 10%. The 3-year survival on the new treat- 
ment is thus hoped to be at least p, = 50%. A simple and 
useful formula for estimating sample size when comparing 
two proportions is 

in each group. The constant c depends on the significance 

Table 2 
Power corresponding to different trearrnenr allocation ratios 

Allocation ratio Power (%) 

1 : 1  
2: 1 
4: I 

95 
92 
82 

level and power chosen. If the significance level is 5% 
(two-sided) and the power to detect a given difference is 
80%, then c = 7.9. Other useful values of c for relevant 
combinations of significance level and power have been 
tabulated (I). The constant c can easily be calculated by 
approximation to the normal distribution. 

With the 3-year survival proportions above, it would be 
necessary to include n = 387 patients in each group. The 
smaller the treatment difference to be detected, the larger 
the sample size. It is clear that to detect small differences 
in effect, as are usually expected in cancer clinical trials, 
very large trials are required. Small trials will have lower 
power to detect clinically important differences, and will 
therefore often be inconclusive. The conclusion that two 
treatments are not different (i.e. the difference is too small 
to be of clinical interest) is only valid if the power is high. 

With a given number of patients randomization into 
groups of equal size is more efficient than allocating a 
different number of patients to each group. Nevertheless, 
there may be reasons, for instance ethical or practical, for 
including more patients on one treatment. In Table 2 it is 
shown that the loss of power is relatively small if the 
imbalance is not too pronounced. In the table groups of 
equal size are assumed to yield power 95% against a given 
difference in treatment effect. The total number of patients 
is kept constant throughout. 

A p-value only states the probability that an observed 
treatment difference is due to chance and does not contain 
information on the size of the difference. Huge trials will 
tend to be ‘significant’ even when the difference is negligi- 
ble from a clinical point of view, whereas small trials will 
usually fail to detect even large differences. The p-value 
depends on the number of patients included in the trial, 
and should always be accompanied by estimates of treat- 
ment effects. When two treatments are compared, a confi- 
dence interval for the effect difference should be estimated. 
A 95% confidence interval contains the true, unknown 
effect with probability 95%, and can be regarded as a 
measure of uncertainty. The shorter the interval, the more 
precise the estimate. 

Precision based 

Instead of basing the sample size estimation on the 
power of a significance test, a precision-based estimate can 
be made. This type of estimate can, for instance, be used 
when planning an uncontrolled phase I1 trial assessing the 
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Table 3 

clinical trials 
Multiuariable regression methods often used in the analysis of 

proportion of patients showing a complete or partial tu- 
mour response. One then decides what approximate length 
a 95% confidence interval should have. To obtain a precise 
estimate (i.e. a short confidence interval), the number of 
observations must be large. The following formula may be 
of use for an approximate estimate of sample size 

n = p( 100 - p)( z/d) * 
where p is the expected percentage responding, z is a 
percentile from the normal distribution (for a 95% confi- 
dence interval z = 1.96), and d is half the accepted length 
of the interval. For illustration, let the expected proportion 
of complete responders on a given treatment be approxi- 
mately p = 60%, and assume it is of interest to estimate the 
true proportion with d = +5% (i.e. an interval length of 
10%). Then n=370 patients should be included in the 
study. If d = & 10% were regarded as acceptable, n = 90 
patients would suffice. These examples show that a large 
number of observations is needed to achieve high precision 
in estimates of proportions. 

Some common methods of analysis 

Knowledge of a few elementary statistical methods is 
essential to researchers and other readers of medical litera- 
ture. The majority of articles published in medical journals 
refer only to a common set of well-known methods of 
analysis, and the reader would benefit from understanding 
this restricted set of methods. Proportions of responders 
are preferably compared by the X2-test or Fisher’s exact 
test. Responses on a continuous scale can be analysed by 
t-tests or non-parametric tests of the Wilcoxon type (10). 
Advice on when to use which type of test can be found in 
elementary textbooks (2, 3). A general rule of thumb is to 
use non-parametric tests if the sample size is small; less 
than 10 patients in each group, say. It should be kept in 
mind that parallel group trials in general lead to compari- 
son of treatments by means of two-sample methods, 
whereas the use of paired tests is restricted to situations 
where patients act as their own control. 

Clinical cancer research frequently deals with analysis of 
survival data. Such data are typically incomplete since 
trials usually do not last long enough to observe the time 
to relapse or death for all patients included. The existence 
of incomplete observations of time to an event is referred 
to as censoring, and with such data special types of 
analyses are required. To estimate survival probabilities, 
the Kaplan-Meier method is extensively used. It is meant 
for graphical presentation of survival curves. The log-rank 
test is used to compare two or more survival curves. 
Instead of pairwise comparison between more than two 
treatments, it is wise to perform a log-rank test which 
compares all treatment groups in a trial simultaneously. 

It is often of interest to use more complex analysis 
methods allowing for the inclusion of prognostic factors, 

Method Dependent variable 
(response) 

Continuous Multiple linear regression 

Survival times Proportional hazards model 
(Cox regression) 

Dichotomous (yeslno) or Logistic regression 
categorical 

thereby improving the precision of the estimated difference 
between treatments. If the treatment groups differ with 
respect to one or more prognostic factors, adjustment for 
these factors in the analysis may alter both the size and the 
significance of the treatment difference. When responses 
are quantitative, multiple linear regression is used to adjust 
for prognostic factors. With a dichotomous response (yes/ 
no), logistic regression may be used, and for survival data 
proportional hazards models (usually referred to as Cox 
regression) are applied (Table 3). Such multivariable meth- 
ods are complex and based on assumptions that are often 
violated. It is recommended not to perform such analyses 
without consulting a statistician. 

Which patients should be included in the analysis? 

Ideally, no patients should be lost to follow-up during a 
clinical trial, and all patients should be included in the 
statistical analysis of response. In practice, however, pa- 
tients withdraw for a variety of reasons, they fail to 
comply with the treatment regimen they are randomized 
to, or experience side effects which make it necessary to 
stop treatment. Unless it is planned how to treat such 
patients in the statistical analysis, serious bias may occur. 
If, for instance, patients who withdraw from one treatment 
because it is ineffective are not included in the analysis, the 
treatment effect will be exaggerated. No true best solution 
to the problem of missing data exists. It is important, 
however, to plan the handling of such problems in ad- 
vance, and to include a description of intended strategies 
in the trial protocol. 

Broadly speaking, two main types of populations to be 
analysed exist. A ‘per-protocol population’ consists of 
patients complying with treatment and not violating as- 
sumptions made in the protocol. Such a population may 
be used to estimate the ‘true’ effect of a treatment when 
used according to protocol. Recognizing that patients are 
in practice seldom acting according to idealized standards, 
a so-called ‘intention-to-treat population’ is often 
analysed. Here, all patients are included, whether or not 
they comply with the protocol for the therapy they were 
allocated to. This may be regarded as a pragmatic ap- 
proach to assessing treatment effect. The purpose of 
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analysing responses on an intention-to-treat basis is to 
remain conservative, i.e. to underestimate rather than 
overestimate a treatment difference. When drawing conclu- 
sions regarding treatment differences, the emphasis should 
be put on results based on the latter type of analysis 
population. Further discussion on this issue is presented by 
Pocock (1) and the CPMP Working Party (6). 

Multiple endpoints 

In most clinical trials several different endpoints or 
measures of efficacy are registered. For cancer clinical 
trials a common endpoint is the proportion of patients 
with complete or partial tumour response, no change, or 
progressive disease, according to specific criteria. Other 
frequently used endpoints are overall survival, cancer-re- 
lated survival, and time to progression. Difference in toxi- 
city between chemotherapy regimens may be analysed, in 
addition to comparison of quality of life measures over 
time. 

The main problem with including a large number of 
endpoints is that the use of separate significance tests for 
each endpoint will increase the risk of false positive find- 
ings. With a 5% significance level 1 in 20 significance tests 
will be expected to be significant even when treatments are 
truly equivalent. A simple solution to this is to multiply 
each p-value by the number of endpoints subjected to 
significance testing. However, this so-called Bonferroni 
correction is conservative and tends to overcorrect, espe- 
cially if the endpoints are strongly associated with each 
other. Instead, it may be preferable to reduce the number 
of endpoints registered, or specify in advance one or two 
primary endpoints. Selection of endpoints with low p-val- 
ues after completion of the trial is a ‘dirty trick’ that leads 
to serious overestimation of the difference between treat- 
ments. Instead of reducing the number of endpoints, it 
may sometimes be feasible to combine multiple endpoints 
into a common score, as in quality of life research, 
where several items are added up to give one single score. 
The creation of meaningful scores of this kind is not an 
easy task, and analysis results should be interpreted with 
caution. 

Subgroup analyses 

A question that frequently occurs during analysis is 
whether the difference in response between two treatments 
depends on certain patient characteristics. Dividing pa- 
tients into different subgroups and comparing treatments 
within separate subgroups is tempting, but may lead to 
problems. Separate significance tests do not provide direct 
evidence that a patient characteristic affects the treatment 
difference. The result of an interaction test would be more 
valid. Another source of bias is that data may be broken 
down in several ways, and problems with the interpreta- 

tion arise since a large number of p-values can be calcu- 
lated, thus leading to an increased risk of false positive 
findings. In addition, subgroup analyses create problems 
regarding statistical power; subgroups tend to be too small 
to uncover relevant treatment differences. It may some- 
times be useful to display results for different subgroups, 
but subgroup analyses should generally be regarded as 
information of secondary interest to the overall compari- 
son of treatments and any findings should be interpreted 
with caution. 

Interim analyses 

During the course of a large clinical trial it will both for 
ethical and for economic reasons often be of interest to 
perform one or more interim analyses before the planned 
number of patients has been included. If a significant 
difference between treatments can be demonstrated, the 
trial will be stopped. Thus, fewer patients will be included 
in the inferior treatment group, and more patients can 
benefit from receiving the better therapy. 

However, interim analyses must not be performed unless 
they are planned in advance. Table 4 shows the increase in 
overall significance level when repeated significance tests 
are performed on accumulating data (11). The table is 
based on a normally distributed response with known 
variance, but similar results are also obtained with other 
types of distribution. Throughout the table it is assumed 
that the inclusion of patients will be stopped if an interim 
analysis yields p < 0.05, otherwise the inclusion of patients 
will continue until the next analysis is performed. From 
the table it can be seen that if a maximum of five analyses 
is performed, the true significance level, i.e. the probability 
of erroneously concluding that two treatments differ sig- 
nificantly when they are in fact equal, will increase from 

To avoid the problem of increasing this error probabil- 
ity, the nominal significance level for each interim analysis 
should be reduced in order to keep the overall significance 
level constant at 5%, say. The maximum number of in- 
terim analyses must be decided in advance. It is customary 
to perform equally spaced interim analyses, either for 
number of patients or time intervals. Table 5 shows nomi- 

5% to 14%. 

Table 4 
The risk of erroneously concluding with a signiJicant treatment 
difference corresponding to the number of repeated significance tests 

performed 

Maximum number of tests Overall significance level (YO) 

1 
2 
3 
5 

10 

5 
8 

I 1  
14 
19 
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Table 5 
Nominal significance Ieuel for each repeated SigniJicance test when 

the overall significance level is 5% 

Maximum number of tests Nominal level (YO) 

1 
2 
3 
5 

10 

2.9 
2.2 
1.8 
1.6 
1.1 

nal significance levels which may be used for repeated 
significance tests with an overall level of 5%. The method 
has been developed by Pocock (1 1 )  and is often referred to 
as group sequential analysis with fixed nominal level. 
Other methods which, instead, apply variable significance 
levels throughout the trial are sometimes used (12). The 
main idea of all interim analysis methods is to make it 
possible to stop trials early without inflating the p-value. 
Pure sequential methods differ from interim analyses in 
that the trial may be stopped early, not only when a 
significant difference is found, but also if it can be con- 
cluded that there is no evidence of a treatment difference. 

Publication bias 

It is a common error that statistical significance is 
considered definite proof of a real treatment difference. 
Authors tend selectively to report significant trial results, 
whereas non-significant results are not mentioned. Occa- 
sionally this may be done deliberately, but more often it is 
probably due to the author being unaware of the resulting 
bias. The fact that trials with positive findings are more 
likely to be published makes the situation worse. Positive 
trials also tend to receive more attention from both editors 
and readers. It has been argued that perhaps the majority 
of trial reports claiming a treatment difference are false 
positives (1) .  

Conclusions 

In order to draw valid conclusions from clinical trials it 
is important to avoid common errors in trial design and 
interpretation of results. Sophisticated statistical analysis 
methods can never replace proper trial design. To be 
conclusive, trials should include a control group, patients 

should be randomized between treatments, and potential 
sources of bias should be identified and dealt with at the 
planning stage. 

Before conducting a trial it is very important to estimate 
the sample size necessary to draw a valid conclusion. Small 
trials are rarely able to uncover even large differences in 
treatment effect, and it may be argued that it is unethical 
to include patients in trials that are in advance known 
almost certainly to be inconclusive. It must on the 
other hand be remembered that a statistically significant 
difference does not necessarily imply clinical relevance. A 
p-value gives limited information in itself, and should 
always be accompanied by estimates of treatment effect, 
including a confidence interval. Unplanned interim analy- 
ses, and the reporting of an extensive number of p-values 
from subgroup analyses or multiple endpoints should be 
avoided. 
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