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  Abstract 
  Introduction.  Dynamic  18 F-FDG PET allows the study of glucose distribution in tissues as a function of time and space. 
Using pharmacokinetics, the temporal uptake pattern of  18 F-FDG may be separated into components refl ecting perfusion 
and metabolism. Bevacizumab is an angiogenesis inhibitor which prevents the growth of new blood vessels, and may poten-
tially lead to normalization of the blood circulation in the tumor. The purpose of the study was to explore the use of dynamic 
PET as a tool for monitoring treatment effect, refl ected by changes in perfusion and metabolism.  Materials and Methods.  
Twelve athymic nude mice, bearing the bilateral triple-negative human breast cancer xenograft MAS98.12 were treated 
with bevacizumab (5 mg/kg  i.p. ). Dynamic PET data was acquired prior to and 24 and 72 hours after treatment for 1 hour 
after injection of 10 MBq  18 F-FDG and fi tted with a FDG two-tissue compartment model. The changes in the rate con-
stants  k  1 ,  k  3 ,  MR  FDG  and the vascular fraction  ν  B  were assessed. To evaluate the effect of treatment regimes, 30 mice, 
randomized in 5 groups, received either vehicle (0.9% NaCl), bevacizumab (5 mg/kg  i.p. ), doxorubicin (8 mg/kg  i.v. ) or 
bevacizumab and doxorubicin either together, or doxorubicin 24 hours after bevacizumab treatment. Tumor volume was 
measured twice a week.  Results.  The perfusion-related rate parameter  k  1  and the metabolic rate constant  k  3  decreased sig-
nifi cantly 24 hours after treatment. This decrease was followed by an increase, albeit non-signifi cant, at 72 hours post 
treatment. Doxorubicin given 24 hours after bevacizumab showed less antitumor effect compared to concomitant treatment. 
 Conclusions.  Dynamic PET can detect changes in tumor perfusion and metabolism following anti-angiogenic therapy in 
mouse xenograft models. Longitudinal dynamic PET, used to assess the effi cacy of anti-angiogenic treatment, can identify 
the time frame of potential tumor vasculature re-normalization and allow optimal timing of supplementary therapy (radiation 
or chemotherapy).   

  Formation of new blood vessels (angiogenesis) is 
a prerequisite for the progression of solid tumors 
[1] and is controlled by a number of pro- and 
anti-angiogenic factors. In the majority of solid can-
cers the balance is shifted towards pro-angiogenic 
conditions due to expression of the vascular 
endothelial growth factor (VEGF). VEGF is one of 
the main molecules stimulating proliferation and 
migration of endothelial cells. This promotes tumor 

capillary growth and increases permeability of exist-
ing blood vessels, resulting in structurally and phys-
iologically abnormal and spatially heterogeneous 
tumor vasculature [2]. Increased resistance to bfood 
fl ow and impaired blood supply restrict delivery of 
oxygen and nutrients to the tumor leading to radio-
therapy resistance, as well as resistance towards 
conventional cytotoxic drugs and molecular-
targeted therapies [3]. 
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 The use of angiogenesis inhibitors has become an 
established practice in cancer management. The 
majority of available strategies targets VEGF, either 
by direct binding to the molecule, by blocking the 
VEGF receptors or by blocking downstream signaling 
pathways [4]. Several drugs are under approved or are 
used in ongoing clinical trials for many types of cancer 
[5]. Bevacizumab (Avastin, Genentech, La Roche, 
Basel, Switzerland) was one of the fi rst clinically 
available angiogenesis inhibitors. Bevacizumab is a 
recombinant humanized monoclonal antibody that 
binds to VEGF, promotes VEGF degradation and 
thereby prevents receptor activation [6]. Despite a 
fair risk profi le in most cancer type, the drug should 
be used with caution, as adverse effects are not 
uncommon [7]. 

 Along with the inhibition of vessel formation, 
bevacizumab alters the existing vasculature [6], 
leading to a degradation of existing capillaries and a 
transient normalization of blood vessels, often 
referred to as  “ the window of opportunity ”  [3]. Fur-
thermore, it was proposed by Jain [3] that this 
normalization will increase tumor blood fl ow, decrease 
interstitial fl uid pressure and increase oxygen tension 
and as a result increase the delivery of other drugs. 

 Selection of the optimal dosage for anti-
angiogenic treatment, unlike application of the 
maximum tolerated dose for cytotoxic drugs, is 
challenging. Due to patient heterogeneity, accurate 
dose selection and treatment response monitoring 
are important [3]. Several imaging modalities can be 
used to image angiogenesis and the effect of anti-
angiogenic therapy, including magnetic resonance 
imaging (MRI), x-ray computed tomography (CT), 
positron emission tomography (PET), single photon 
emission tomography (SPECT), and ultrasound 
(US) [8,9]. 

 The most common PET tracer in cancer 
imaging is 2-deoxy-2-[ 18 F]fl uoro-D-glucose ( 18 F-
FDG), which accumulates in cells with high glu-
cose demand [10]. In contrast to conventional 
 18 F-FDG PET, where a PET scan is performed 
typically one hour post-injection, dynamic  18 F-
FDG PET depicts the distribution of  18 F-FDG in 
space and time from the time of injection. Thus, 
dynamic  18 F-FDG-PET refl ects both the early vas-
cular distribution phase and the later metabolic 
phase [11]. Furthermore, pharmacokinetic model-
ing of the tracer uptake can provide information 
more directly related to blood fl ow and tumor 
metabolism [12,13]. 

 In the current work, investigate the effect of anti-
angiogenic therapy in human breast cancer xeno-
grafts using dynamic  18 F-FDG-PET. A longitudinal 
protocol was followed, with assessment of changes in 
vasculature and metabolism, with the aims of explor-

ing the potential for such treatment monitoring, and 
discuss the clinical value of such an approach. Tumor 
regrowth following administration of bevacizumab, 
with doxorubicin given either concomitantly or 24 
hours after bevacizumab, was performed to evaluate 
treatment and the impact of timing between anti-
angiogenic and cytotoxic therapy.   

 Material and methods  

 Animals, xenografts and anesthesia 

 Previously described, patient-derived basal-like 
breast carcinoma xenografts (MAS98.12) were used 
in this study [14]. Tumor tissue fragments of approx-
imately 1 mm 3 , obtained from a previous passage, 
were implanted bilaterally in the mammary fat pads 
of female athymic nude mice (Athymic Nude-
Foxn1 nu ; weight 23 – 25 g; age 7 – 8 weeks). All exper-
imental protocols were approved by The National 
Animal Research Authority and the experiment 
was conducted according to the regulations of 
the Federation of European Laboratory Animal Sci-
ence Association (FELASA). Mice were kept under 
pathogen-free conditions, at constant temperature 
(21.5    �    0.5 ° C) and humidity (55    �    5%), 20 air changes/
hour and a 12 hour light/dark cycle. Distilled tap 
water was given ad libitum, supplemented with 17- β -
estradiol at a concentration of 4 mg/l. 

 Prior to implantation of xenografts and dynamic 
 18 F-FDG PET, mice were anesthetized with subcu-
taneous (s.c.) injections of a mixture of 2.4 mg/ml 
tiletamine and 2.4 mg/ml zolazepam (Zoletil vet, 
Virbac Laboratories, Carros, France), 3.8 mg/ml 
xylazine (Narcoxyl vet, Roche, Basel, Switzerland), 
and 0.1 mg/ml butorphanol (Torbugesic, Fort 
Dodge Laboratories, Fort Dodge, IA, USA), diluted 
1:5 in sterile water, at a dosage of 75  μ l/10 g of 
body weight.   

 Treatment of xenografts with bevacizumab 
and doxorubicin 

 Experiments started when the longest tumor diam-
eter was between 8 and 10 mm, typically 4 – 5 weeks 
after implantation. Twelve mice were subjected to 
dynamic  18 F-FDG PET imaging before treatment 
and 24 and 72 hours after treatment with bevaci-
zumab (5 mg/kg i.p., Avastin, Genentech, La Roche, 
Basel, Switzerland). To evaluate the effect of different 
treatment regimens, 30 mice were randomized in fi ve 
groups (Supplementary Figure 1, available online at 
http://informahealthcare.com/doi/abs/10.3109/
0284186X.2013.813634). Mice received either 
vehicle (0.9% NaCl), bevacizumab (5 mg/kg i.p.), 
doxorubicin alone (8 mg/kg i.v., Adriamycin, Pfi zer, 
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New York, NY, USA) or bevacizumab and doxorubi-
cin either together, or doxorubicin 24 hours after 
bevacizumab treatment. Tumor size was measured 
twice a week and tumor volume (TV) was calculated 
as TV    �     π /6 * length * width 2  with length and width 
being the two orthogonal tumor diameters When 
the longest tumor diameters for at least two tumors 
in a group had reached 15 mm, the entire group was 
sacrifi ced.   

 Dynamic PET measurements 

 Dynamic  18 F-FDG PET was performed using a 
Siemens microPET Focus 120 (Erlangen, Germany) 
animal scanner. Following overnight fasting, the 
animals were anesthetized and a catheter fl ushed 
with heparinized saline was inserted in the tail vein. 
Groups of two to three mice were placed on the 
examination table, centered within the scanner gan-
try. Prior to PET scanning, the mice cage was placed 
on a heating pad. During preparation, when the mice 
were under anesthesia, they were kept warm by the 
heating pad. For the PET scan, mice were wrapped 
in insulating material. Furthermore, a heating lamp 
was used and a rectal temperature probe was placed 
in one of the mice. The temperature was maintained 
at about 35 ° C. 

 A 60 minute PET acquisition in list-mode was 
started prior to i.v. administration of 10 MBq  18 F-
FDG (GE Healthcare AS, Oslo, Norway) diluted in 
saline. Three-dimensional (3D) dynamic emission 
data were reconstructed using OSEM3D-MAP (two 
OSEM iterations, 18 MAP iterations,  β      �     0.5, matrix 
size    �    128    �    128    �    95) [15], producing images with 
voxel size 0.87    �    0.87    �    0.87 mm 3 . The sampling 
time ranged from 10 s (early time points) to 600 s (late 
time points). All images were stored in microPET 
format and analyzed using PMOD software package 
(PMOD Technologies, Zurich, Switzerland).   

 Quantitative evaluation and kinetic modeling of 
dynamic  18 F-FDG PET 

 Pharmacokinetic analysis was performed using 
a two-compartment FDG kinetic model, using 
individual arterial input functions (AIFs). The AIF 
was obtained by linear interpolation between the 
measured values of the  18 F-FDG time activity curve 
(TAC) from the left ventricle. Tumor tissue was man-
ually delineated in the axial PET images and TACs 
for individual tumors were obtained. TACs were nor-
malized to the AIF, thus accounting for differences 
in injected  18 F-FDG activity between animals, as 
previously described [16]. 

 The median  18 F-FDG TAC for the whole volume 
of interest (VOI) was subjected to kinetic modeling 

using a two-compartment model, described in detail 
elsewhere [16]. Briefl y, the model assumes that the 
tracer concentration in the tissue,  C  T  , can be sepa-
rated in a free (non-metabolized) and a bound 
(metabolized) compartment, with tracer concentra-
tions  C  F  and  C  B , respectively. The four rate constants 
in the model,  k  1 ,  k  2 ,  k  3 , and  k  4 , describes the exchange 
of  18 F-FDG between the two compartments. The 
kinetic parameters are estimated by non-linear fi tting 
of the model to the TAC.  k  4  was assumed to be zero. 
The lumped constant (LC), a conversion coeffi cient 
correcting for the difference in  18 F-FDG and true 
glucose uptake, was set to 0.89. Plasma glucose con-
centration (C GLU ) was set to 5 mmol/l for all analy-
sis The metabolic rate of  18 F-FDG,  MR  FDG , was 
calculated as ( k  1  ·  k  3 )/( k  2    �      k  3 ). The goodness of fi t 
between the measured TACs and the model fi ts was 
evaluated by Pearson ’ s correlation coeffi cient squared 
( r   2 ) in each tumor voxel. 

 Normalized late phase  18 F-FDG uptake (one 
hour post-injection) was used to analysis intra- and 
inter-tumor heterogeneity. For assessment of intra-
tumor heterogeneity, the voxel-by-voxel standard 
deviation in a given tumor, normalized to the AIF 
was used.   

 Statistics 

 For comparison of pharmacokinetic parameters and 
uptake values in kinetic curves an ANOVA on Ranks 
test for repeated measurements with Tukey pairwise 
comparison test as a post-hoc test was performed 
using Sigma Plot 11.2.0. For comparison of normal-
ized standard deviation (intra-tumor variation), 
ANOVA one-way test and a paired t-test as a post-
hoc test was used. The statistical signifi cance level 
chosen was 0.05.    

 Results 

 Dynamic  18 F-FDG PET images of a representative 
animal are shown in Figure 1, together with the 
uptake curves in the tumor and the heart. The latter 
curve constitutes the AIF. 

 Cohort-based normalized TACs and acquired 
pretreatment, and 24 and 72 hours post-treatment 
are shown in Figure 2. Post-hoc analysis showed 
lower early  18 F-FDG uptake (1 – 7 minutes post-
injection) 24 hours after treatment compared to 
pretreatment levels (p    �    0.05). A trend towards a 
recovery in the early phase of the  18 F-FDG uptake 
was observed 72 hours after treatment, but 
the increase did not reach statistical signifi cance. 
Normalized late phase  18 F-FDG uptake (one hour 
post-injection) was reduced by 18% 24 hours after 
treatment (p    �    0.05) compared to levels both before 
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and 72 hours after treatment. There was no signifi -
cant difference between the latter two. 

 We observed changes in the intra-tumor hetero-
geneity of late-phase FDG uptake following anti-
angiogenic therapy. A signifi cant decrease in the 
standard deviation of late-phase FDG uptake 24 
hours after treatment compared to pre-treatment lev-
els was found (Supplementary Figure 2, available 

online at http://informahealthcare.com/doi/abs/10.
3109/0284186X.2013.813634). A partial redistribu-
tion of the voxel values was observed 72 hours after 
treatment, but this change was not signifi cant. 

 The effect of bevacizumab treatment on the phar-
macokinetic parameters is summarized in Figure 3. 
Compared to the baseline values a decrease in all 
pharmacokinetic parameters was observed 24 hours 
after treatment. However, only the decrease in perfu-
sion parameters ( k  1  and  k  2 ) was signifi cant (p    �    0.05). 
This decrease was followed by an increase, albeit 
non-signifi cant, in  k  1  and  k  2  at 72 hours compared 
to 24 hours after treatment. The rate constant  k  3  
showed non-signifi cant decrease 24 hours post-treat-
ment, thereafter increasing signifi cantly towards the 
pre-treatment level 72 hours after treatment. No sig-
nifi cant changes in  v  B  or  MR  FDG  were observed. 

 Growth curves showing the effect of treatment 
with bevacizumab and/or doxorubicin are presented 
in Figure 4. Tumor growth was signifi cantly delayed 
in the group with simultaneous administration of 
bevacizumab and doxorubicin compared to the 
group with a delayed administration of doxorubicin. 
Doxorubicin had a signifi cant additional effect on 
tumor growth delay for both groups compared to the 
group, treated with bevacizumab alone.   

  Figure 1.     A dynamic  18 F-FDG-PET image series in the coronal plane showing the heart and the implanted bilateral human breast cancer 
xenografts MAS98.12 xenografts. The corresponding uptake kinetics are shown in graphs A and B, respectively, where the latter constitutes 
the arterial input function (AIF). Also, the results from the pharmacokinetic model fi t are shown.  

  Figure 2.     Cohort-based median time-activity curves, normalized 
to the AIF, for tumors at baseline and 24 and 72 hours after 
administration of bevacizumab.  
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 Discussion 

 In this study, we have demonstrated the use of 
dynamic  18 F-FDG PET for monitoring response to 
anti-angiogenic treatment in breast cancer xeno-
grafts. The MAS98.12 xenograft that was used is 
derived by implanting human tumor material in the 
mammary fat pads, and has retained the morphology 

and gene expression pattern found in the original 
patient tumor [14]. This orthotopic model provide a 
more relevant microenvironment compared to sub-
cutaneous models, and is therefore more attractive 
for studying anti-angiogenic therapy. MAS98.12 
have previously been shown to express VEGF, to be 
highly vascularized and to respond to bevacizumab 
treatment [17]. In this study, we found that for some 
tumors the free component of  18 F-FDG is higher 
than the bound component one hour after bolus 
injection (Figure 1). This is expected for highly 
vascularized or low metabolic regions or tumors. 
We made similar observations in our previous study 
on gastro-intestinal xenograft [13]. 

 We found signifi cant changes in  18 F-FDG-
uptake, both in the early and the late PET acquisition 
phases following administration of bevacizumab 
(Figure 2). As the early phase largely refl ects tumor 
vasculature/perfusion and the late phase refl ects 
tumor metabolism, we were able to show the effects 
of bevacizumab on both these endpoints (Figure 3). 
Bevacizumab reduced the tumor perfusion ( k  1 ,  k  2  
and  v  B ) and metabolism ( k  3  and  MR  FDG ) 24 hours 
after treatment, but the effect was transient as the 
PET parameters largely returned to baseline levels 
thereafter. Transient changes could also be detected 
in the intra-tumor heterogeneity in  18 F-FDG uptake. 
These tumor alterations were also detected by the 
pharmacokinetic analysis, where the perfusion-
related parameters ( k  1  and  k  2 ) were signifi cantly 
reduced 24 hours after drug administration. The 

  Figure 4.     Tumor growth curves showing delayed tumor growth in 
the group with simultaneous administration of bevacizumab and 
doxorubicin compared to the group with a delayed administration 
of doxorubicin.  

  Figure 3.     Box plot of the pharmacokinetic parameters at different time points. Groups signifi cantly differed from pre-treatment group 
marked with  * (p    �    0.05).  
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 Previously, we have described changes in  18 F-
FDG-PET-derived pharmacokinetic parameters 
following radiotherapy in prostate cancer xenografts 
[16]. In that work, we found that tumor perfusion 
and tumor metabolism increased 24 hours after 
irradiation, which was attributed to increased vessel 
permeability and possibly alterations in tumor 
hypoxia. In the current work, administration of 
bevacizumab resulted in the opposite effect: a reduc-
tion in both perfusion and metabolism 24 hours 
after administration. These studies illustrate the 
potential usefulness of dynamic  18 F-FDG-PET for 
general assessment of vasculature and physiology 
after cancer therapy, regardless of whether radiation 
or tailored drugs are used. In future studies, we aim 
at using dynamic  18 F-FDG-PET for investigating 
the treatment effect following combined therapy, 
including radiotherapy and different cytotoxic and 
anti-angiogenic drugs.                   
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 The version of this article published online ahead of print on 29 
Aug 2013 contained an error on page 1. The heading of the 
article should have read “Original article”, not Letter to the 
Editor. The abstract was also missing. The error has been cor-

rected for this version. 




