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CONTRIBUTION OF TRANSIENT BLOOD FLOW TO TUMOUR 

HYPOXIA IN MICE 

RALPH E. DURAND and NANCY E. LEPARD 

Tumours grown in mice typically exhibit regions of Rypoxia believed to result from two different 
processes: chronic oxygen deprivation due to consumption/diffusion limitations, and periodic deprivation 
resulting from transient reductions in tumour blood flow. The relative contribution of each is, however, 
not generally known. We have addressed this issue in transplanted SCCVII squamous cell carcinomas 
in C3H mice, using a quantitative extension of the fluorescence ‘mismatch’ technique coupled with cell 
sorting from irradiated tumours. At least half of the vessels in these tumours exhibit transient perfusion 
changes. Additionally, a majority of the 1 5 2 0 %  of cells that are sufficiently hypoxic to be resistant 
to radiation in the SCCVII tumours appear to result from cyclic, not continuous (diffusion-limited) 
hypoxia. Since different strategies may be necessary to counteract cyclic hypoxia in tumours, the 
possibility of transient blood flow changes should not be ignored when planning cancer therapy for 
humans. 

The fact that solid tumours in all species generally 
develop regions of reduced blood flow, decreased pH, and 
ultimately, regional hypoxia has long been recognized. 
Unfortunately, most of these changes have a negative 
impact on the potential for successful anticancer therapy. 
Considerable effort has thus been expended in recent years 
to deal with the hypoxic cell problem in solid tumours, 
with occasional-but usually modest-successes. 

An interesting paradox in the study of tumour hypoxia 
is that relatively little effort has been expended in attempt- 
ing to understand the basis (or nature) of that hypoxia. 
The classic work of Thomlinson & Gray (l) ,  supplemented 
by detailed laboratory information (2-4), led to the ‘diffu- 
sion limited’ model, whereby cells that are sufficiently 
displaced from blood vessels are continuously deprived of 
oxygen. The suggestion that transient blood flow changes 
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(varying oxygen delivery) may occur in solid tumours was 
made much later (9, and definitive evidence for hypoxia 
resulting from this process has emerged only in the last 
decade (6, 7). 

The realization that both continuous and cyclic hypoxia 
are likely to occur in many if not most solid tumours 
has led to a rethinking of the hypoxic cell problem, and 
of methods to overcome it (8-10). In fact, as argued 
in several of the recent reviews just cited, tumour hypoxia 
is now often envisaged as a therapeutic advantage, 
rather than a liability. The validity of that hypo- 
thesis undoubtedly will be tested as these newer ap- 
proaches reach the clinic; we nonetheless believe that the 
chance of success in these endeavours will be markedly 
increased by a more detailed understanding of tumour 
hypoxia itself. 

We are developing techniques that may resolve this 
question, and in this report, will illustrate their utility using 
the SCCVII squamous cell carcinoma line grown by trans- 
plantation in C3H mice. Using a quantitative extension of 
the fluorescence ‘mismatch’ technique (7, 1 l ) ,  coupled with 
cell sorting after irradiation (7, 12-14), we now report 
estimates of the proportions of hypoxic cells resulting from 
cyclic versus continuous oxygen deprivation in these tu- 
mours. 
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Material and Methods 
Mice arid tunlours 

The murine SCCVII squamous cell carcinoma line was 
maintained by serial subcutaneous transplant in C3H/HeN 
animals, bred in our facility. Tumours were used for 
mismatch experiments when 50-900 mg in weight, and for 
sorting studies in the 300-600 mg range. 

Misniatch studies 

Microregional tumour perfusion was investigated by 
intravenous injection or infusion of Hoechst 33342 (Sigma 
Chemical Co., St. Louis, Missouri) at quantities up to 
1 .O mg/mouse (range 4-52 mg/kg), and a carbocyanine 
derivative ( DiOC,, Molecular Probes, Eugene, Oregon) a t  
0.25 mg/mouse or less (range 2-14mg/kg). Due to the 
significant vasoactivity ( 1 1 ,  15) of the carbocyanine deriva- 
tive formulated in DMSO, it was injected last whenever 
the stains were not simultaneously administered. Tumours 
were typically excised 10 min (range 0-60 min) after car- 
bocyanine administration, then embedded, frozen and sec- 
tioned. 

Sections imaged using either a Zeiss axioplan or Zeiss 
photomicroscope were analyzed with our imaging systems 
using locally-developed software. Briefly, where the 
fluorescence intensity of either stain adequately exceeded 
background, the relative intensity of the DiOC, staining 
was compared with that of Hoechst. Variation by less than 
a factor of 2 was defined to be '0% change'; a 2-3 fold 
increase in carbocyanine staining relative to  Hoechst was 
called a + 100% change, etc., whereas relative decreases in 

DiOC, intensity were similarly expressed as negative per- 
centage changes. Changes exceeding k 300% ( > 4-fold 
increases or decreases in relative carbocyanine intensity 
respectively) correspond to  our previous visual criteria ( 11) 
for 'mismatch'. 

Irradiation and cell sorting 

Like our standard procedure (13, 14), cell sorting after 
'anoxic' or in vitro irradiations used 1 .O mg Hoechst 33342 
injected into the lateral tail vein. In both cases, animals 
were sacrificed 20 min later (nitrogen asphyxiation for 
anoxic controls, or cervical dislocation for the in vitro 
studies). Tumour irradiation with 250 keV x-rays at  a dose 
rate of about 3 Gy/min was performed either in situ imme- 
diately after asphyxiation, or  in vitro following tumour 
disaggregation as described subsequently. Air-breathing 
animals were irradiated at a reduced dose rate over a 
10- 12-min interval, while restrained and either simulta- 
neously or subsequently infused with Hoechst (same total 
dose) using an automated infusion pump. 

Once excised, tumours were rapidly cooled to ice tem- 
perature and finely minced, then treated with an enzyme 
suspension of 0.5% trypsin, 0.08% collagenase and 0.06% 
DNAase for 30 minutes, filtered through 30 pm nylon 
mesh to remove clumps, and the monodispersed cells 
resuspended in fresh medium for processing through the 
flow cytometer. Cells were defined on the basis of forward 
light scatter (cell size) and anti-mouse IgG negativity to 
exclude infiltrating immune cells (16); sort windows were 
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Fig. 1. Clonogenic fraction of cells as a function of cellular location following irradiation of V79 multicell spheroids ( a )  or SCCVII 
tumours ( b  and c) under the indicated conditions. In all cases. the expected survival for anoxic or fully reoxygenated cells from each 
subpopulation is indicated for reference (open symbols): the dashed lines show the 95% confidence intervals for the experimental curves 
for spheroids ( n  = 6 ) ,  simultaneously perfused tumours ( n  = S ) ,  and tumours stained following irradiation ( n  = 3). Note that the latter 
groups showed identical mean survivals, but quite different distributions of aerobic versus hypoxic cells. 
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automatically set to subdivide the cell population into 10 
fractions (the most intensely Hoechst stained cells, labeled 
fraction I ,  were proximal to functional vasculature). 

Predetermined numbers of cells were sorted into test 
tubes containing culture medium (17); these tubes were 
then poured and rinsed into conventional Petri dishes and 
incubated in 94% a i r+6% CO, for 12 days for colony 
formation. All in vitro techniques used minimal essential 
medium containing 10% fetal bovine serum; no special 
additives were used for tumour cell culture, nor were 
feeder cells, gel cultures, or low oxygen tensions found to  
significantly improve cell growth or viability. 

Results 

The basis for our interest in the nature of hypoxic 
tumour cells is illustrated in Fig. 1, where cell sorting was 
used to relate radiosensitivity (oxygenation) to accessibility 
of the fluorescent stain, Hoechst 33342. In Fig. la ,  cells 
from spheroids (the ultimate model of static, diffusion 
limited, continuous hypoxia) clearly demonstrate the ex- 
pected range of radiosensitivities varying from that of 
well-oxygenated conditions to severe anoxia as cells were 
selected from regions progressively deeper into the 
spheroids. Conversely, SCCVII tumour cells irradiated in 
air-breathing animals at the same time that the Hoechst 
dye was being infused showed the expected response only 
for the well-perfused cell subpopulations (Fig. Ib), and 

Hoechst 
c 

when irradiation and Hoechst infusion were not coincident 
in time, the staining procedure was again (7)  unable to 
reliably identify either aerobic or hypoxic cells (Fig. Ic). 
Interestingly, however, mean tumour cell survival was 
virtually identical in Fig. Ib  and c; only the distributions 
of radiosensitivity changed. 

In our laboratory, the SCCVII tumour grows with a 
hypoxic fraction of about 20%) (6, 13, 18). When tumours 
are processed with our sorting techniques, that should 
result in hypoxic cells being recovered only from the two 
dimmest cell fractions (numbers 9 and 10) if hypoxia were 
continuous and exclusive to  poorly perfused regions of the 
tumour. Further, if tumour perfusion and oxygenation 
were 'static', both in situ curves in Fig. I b  and c should 
have been identical. Neither was observed; significant 
numbers of hypoxic (radioresistant) cells were present even 
in some intermediate subpopulations (fractions 4-8) that 
were Hoechst stained in Fig. 1 b, and in all subpopulations 
when staining and irradiation were not coincident (Fig. 
lc). Hence. it appears that transient changes in tumour 
perfusion affect quite poorly-perfused regions, as well as 
the better-perfused regions of the tumour. 

Numerical analyses allow several additional inferences 
to be drawn from the data in Fig. lb. An estimate of 
tumour hypoxic fraction can be made in a manner 
analogous to the usual 'paired survival curve' method (19, 
20); the fraction by fraction ratio of survival from tumour 
cells in the normal host to that in the asphyxiated animal 
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Fig. 2, A schematic representation of the quantitative fluorescent dye mismatch technique used in our laboratories. The digitized images 
show representative tumour sections illustrating each pattern of response; in all cases the left image indicates the Hoechst 33342 
distribution, and the right image shows DiOC,. See text for further details regarding quantification of the images. 
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gives the fraction of hypoxic cells in each cell subpopula- 
tion recovered, and can be summed to estimate the net 
hypoxic fraction. This exercise yields a number of 13%- 
lower than the value of 20% previously mentioned for 
acute irradiations, but as expected if a part of the normal 
hypoxic fraction is due to transient changes in blood flow 
(by protracting the irradiation interval, cells in regions 
subject to transient flow should be aerobic for at least part 
of the exposure). 

While the sorting data of Fig. 1 suggest that transient 
hypoxia may be a significant factor in the SCCVII tu- 
mours, these data alone do not resolve the issue. In 
particular, Fig. 1 shows no direct evidence for blood flow 
variations; that conclusion is entirely inferential. We have 
consequently invested considerable effort in developing 
and quantifying techniques for the direct demonstration of 
changes in tumour perfusion. The fluorescent stain 'mis- 
match' technique originally developed in our laboratory 
(11, 15) has now been extended to allow quantitative 
estimates of both the degree and extent of blood flow 
changes, as briefly described in 'Material and Methods' 
and shown schematically in Fig. 2. 

Many limitations of the 'mismatch' technique have be- 
come evident during our continuing studies. Perhaps the 
most important of these can be appreciated from the 
representative staining images included in Fig. 2, where 
dissimilar diffusion patterns for different stains outward 
from blood vessels can potentially lead to problems of 
interpretation and quantification. As a consequence, even 
under conditions where total 'match' between the stains is 
expected (for example, simultaneous administration), a 
mismatch profile skewed somewhat toward excess Hoechst 
dye is routinely observed, as illustrated in the central panel 
of Fig. 2 labeled 'Match'. 

In the course of developing these techniques, we have 
now processed more than 200 'control' SCCVII tumours, 
where control denotes no treatment other than dye admin- 
istration. Some results particularly pertinent to the ques- 
tion of quantifying cyclic hypoxia in this tumour system 
are summarized in Fig. 3; in each case, for ease and 
consistency of data presentation, we show only the per- 
centage of image pixels (which, due to the numbers of 
sections analyzed per tumour essentially represents the 
percentage of tumour vessels) that showed relative staining 
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Fig. 3. A compendium of the data we have obtained for dye mismatch studies in control (dye-stained only) SCCVII tumours during 
development of our image quantization procedures. In all cases, the percent of matched pixels (vessels) is plotted; a) shows the sequential 
response over a three-year period; b) indicates mismatch as a function of the time interval between administration of the stains; c) shows 
staining agreement as a function of tumour weight; and d) shows the lack of complete concordance of the stains even when simultaneously 
injected (time = 0) or infused over increasing time intervals. 
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Table 
Numerical analysis of selected data from Fig. 3b 

Interval 0 min 1/2/4 min 8/10 min 16/20 min 30 min 

0 min 93.08 k 1.19 ( n  =67) 
1/2/4 rnin p < 8 x 
8/10 min p < 2 x lo-’’ p = 0.723 
16/20 rnin p < 9 x p = 0.763 p = 0.525 79.38 4.38 ( n  = 28) 
30 min p < 1 x lo-’ p = 0.036 p = 0.083 p = 0.022 85.44 f 3.00 ( n  = 29) 

The percentages of vessels showing perfusion that remained within 2-fold limits are shown with 95% confidence limits along the diagonal 
(for selected groupings of injection intervals). The probability of any two of these values being identical (Student’s t-test) is indicated 
in the intersecting row and column, with those that are significantly different at the 95% level or greater highlighted. 

80.26 f 3.97 ( n  = 27) 
81.23 k 3.94 ( n  = 26) 

levels differing by less than a factor of two. We define these 
to be vessels which were not subject to  transient perfusion 
changes during the times of observation. 

Fig. 3a shows our results plotted in temporal sequence, 
thereby illustrating two important points. First, depending 
upon the particular protocol under investigation, consider- 
able amounts of ‘mismatch’ were observed (we again 
emphasize that these animals received no treatments other 
than dye injection). Second, despite the fact that these data 
were accumulated over a 4-year period and analyzed using 
different microscopes, video cameras and imaging boards, 
no systematic changes in blood flow alterations in this 
tumour system were seen (remembering, of course, that 
different types of experiments were performed as the pro- 
ject evolved). Fig. 3b presents the same data displayed as a 
function of the time interval between stain administrations 
(concurrent injection or infusion of the two dyes was 
plotted as 0 rnin between the stains). For  the more exten- 
sive data spanning intervals up to  30 min, it is interesting 
to note that the plotted third order polynomial regression 
line suggests that the number of matched vessels was less 
than 100% even for simultaneous injection or infusion, and 
perfusion match was minimal for intervals of 15-20 min. 
These points are reinforced in the table, where selected 
observations were grouped for statistical analyses. It 
should also be noted that the somewhat lower than ex- 
pected percentage of matched vessels for the shorter inter- 
vals between stains results in part from transient 
vasoconstriction (induced mismatch) by the Hoechst dye. 

In contrast to  the initial report from our laboratory 
( l l ) ,  our current dataset shows a distinct decrease in 
vessels showing constant perfusion as tumours enlarge to  
about 300mg, with a more gradual but progressive de- 
crease accompanying further growth. While Fig. 3c shows 
a fitted third order polynomial to indicate ‘substructure’ in 
the data, even a simple linear regression analysis results in 
a statistically-significant decrease in matched perfusion 
with tumour size (the regression equation is y = 90.5- 
13.1 x, with 95% confidence limits of 3.1-22.7 for the 
slope). A feature of particular interest to us is plotted in 
Fig. 3d, which shows the subset of tumours in which the 

two dyes were administered simultaneously as injections 
(plotted as an infusion duration of 0 rnin), or infusions for 
the indicated periods. Clearly, mismatch was observed in 
all cases, and interestingly, was not reduced for long 
infusion times. 

Several additional inferences can be drawn from the 
data in Fig. 3. Given that the half life of each stain is 
about 2 rnin in the murine circulatory system (15, 21), and 
that our analytical procedures are limited to a range of 
intensities spanning about %-fold (the intensity decrease 
that would be seen after 5-6 stain half lives), it follows 
that over a 10-12min time interval, as much as 20% 
mismatch was observed. This value, as discussed later, is 
entirely consistent with the inferences derived from the 
sorting data of Fig. 1. 

Discussion 

Based on the numbers and locations of hypoxic cells 
observed with our cell sorting techniques, and on direct 
analysis of tumour perfusion by fluorescent dyes, we con- 
clude that transient blood flow in the SCCVIl murine 
squamous cell carcinoma is not just a mechanistic curios- 
ity, but rather, is the major cause of hypoxia in that 
tumour. 

The basis for that statement is evident in both the 
sorting and mismatch data presented here. Delivering radi- 
ation over a 10-12 min interval (in an attempt to maxi- 
mize the concordance between dye delivery and tumour 
oxygenation for simultaneous irradiation and staining) led 
to  a reduction of the hypoxic fraction from 20% to 13%. 
immediately suggesting that a t  least a third of the cells 
normally classified as hypoxic in these tumours during 
acute radiation exposures are produced by transient perfu- 
sion changes. Further, a t  least half of the hypoxic cells 
recovered for sorting during the perfusion/irradiation ex- 
periments, and virtually all recovered when staining fol- 
lowed irradiation showed some staining with the Hoechst 
dye, again suggesting transient perfusion and increasing 
the total pool of such cells to a t  least two-thirds of all 
hypoxic cells. Direct analysis of perfusion mismatch with 
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the fluorescent dyes indicates that at least 15% of all 
vessels showed significant mismatch over a similar time 
frame; when coupled with other (unpublished) observa- 
tions from our lab suggesting that the transient flow 
changes probably have a periodicity of 15-25 min, it fol- 
lows that up to half of all tumour blood vessels may be 
subject to transient changes in perfusion (note the conser- 
vative nature of these arguments; the observed mismatch is 
actually more than adequate to explain all hypoxia in the 
tumours). 

The qualitative differences seen for the sorting data 
using spheroids versus tumours in Fig. 1 add credibility to 
conclusions drawn in the tumour studies. Clearly, the 
'resolution' seen for spheroid cell sorting argues that tech- 
nical limitations in the sorting procedures cannot be en- 
tirely responsible for the tumour results. In the (static) 
spheroid system, the internal cells become nutrient de- 
pleted, and consequently accumulate in the more radiosen- 
sitive Go phase of the cell cycle (22. 23). This cycle- 
dependent increase in radiosensitivity is seen under both 
the normal hypoxic, and the artificially reoxygenated cond- 
itions. By inference, the absence of a similar sensitivity diff- 
erential in the poorly perfused tumour cells is again indic- 
ative of a lack of corresponding, chronically-depleted cells. 

A major question still to be resolved is the adequacy of 
dye delivery as a measure or indication of oxygenation 
status. Clearly, the lack of concordance between staining 
and hypoxia could be explained on the basis of imperfect 
dye delivery for either Fig. l b  or Fig. lc. However, the 
differences between those panels cannot be discarded as 
easily. We are also concerned about the role of stress in the 
response (data like those in Fig. 3b and d suggest that the 
measurement techniques themselves can modify tumour 
blood flow). It should, however, be noted that the animals 
were handled almost identically for both irradiation and 
staining experiments, thus increasing our confidence that 
irrespective of whether or not trauma exacerbates transient 
blood flow, it is at least a constant in all our experiments 
(and. of course, a reality in all irradiations and/or other 
manipulations of experimental animals, or patients). 

We find it interesting that there is now little opposition 
to the idea that transient blood flow is a potential contrib- 
utor to tumour hypoxia (10, 24), yet much of the experi- 
mental work currently directed toward the hypoxic cell 
problem inherently assumes that only continuously hy- 
poxic cells pose a problem for therapy. As a practical 
illustration of that point, consider the usual test for hy- 
poxia-directed cytotoxicity of bioreductive agents: the abil- 
ity of the bioreductive agent to kill cells which survive a 
large dose of radiation. Given our observations that a t  
least half of the SCCVII cells which survive irradiation will 
be well perfused very quickly thereafter, the ability to kill 
such cells provides no information on hypoxic cell specific- 
ity. Consequently, our data highlight the need for an 
improved understanding of the nature of hypoxia in tu- 

mour models, as well as indicating the difficulties of ex- 
trapolating such data to  human disease. 
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