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Introduction

Spot-scanning proton arc (SPArc) therapy was introduced in
2016 offering superior target conformity and simplifying the
proton therapy treatment workflow [1,2]. It is considered an
advanced intensity modulated proton therapy (IMPT) tech-
nique through arc trajectory optimization. This new approach
allows the proton system to deliver the proton beam follow-
ing a sequence of control points while the gantry continu-
ously rotates around the patient.

One of the challenges in the clinical implementation of
proton arc therapy is to minimize its beam delivery time
(BDT), as the plan might contain numerous energy layers
and spots. In the beginning stage of the pencil beam scan-
ning (PBS) clinical implementation, energy layer switching
time (ELST) is the bottleneck due to the technical limitation
that prolongs the treatment delivery time. Thus, several stud-
ies focused on reducing energy layer switching time through
energy sequence optimization [3–7]. However, a recent study
[8] found that the BDT is approximately proportional to the
spot number for IBA’s ProteusONE PBS proton therapy sys-
tem in Beaumont where about half the treatment delivery
time is spent on the spot switching [9]. It becomes a new
bottleneck of SPArc therapy, which normally contains thou-
sands of spots making it very challenging to deliver in a
timely manner. Thus, it is critical to reducing the spot num-
ber while maintaining the optimal treatment plan quality.

Searching for the minimum spot number solution can be
considered as a sparsity optimization problem [10,11], where
the sparsity is the number of zero-valued elements divided
by the total number of elements. The most natural measure
of sparsity is the counting function jj:jj0, called usually the
l0-norm [12]. The l0-norm counts the total number of non-
zero elements of a vector (spots). Minimizing the number of
nonzeroes of the solution (its l0-norm) is a difficult noncon-
vex and non-deterministic polynomial-time hardness (NP
hard) optimization problem [13,14]. One widely used

replacement method is using l1-norm [13,15] as convex
approximation to the l0-norm (See supplemental material for
their comparison). Meanwhile, a novel primal dual active set
(PDAS) algorithm was developed by Bergounioux et al. [16]
and Ito et al. [11] to solve the nonsmooth optimization [17]
(not necessarily differentiable optimization) problem. For l0-
regularized minimization problem, Jiao et al. [18] and Huang
et al. [19] propose a PDASC algorithm, which couples the
PDAS with a continuation strategy on the regularization par-
ameter in outer iteration. Each inner iteration first identifies
the active set from both primal and dual variables, then
updates the primal variable by solving a (typically small)
least-squares problem defined on the active set, from which
the dual variable can be updated explicitly. It is observed
that the PDASC algorithm yields optimal solutions that are
comparable with other methods, e.g., OMP, CoSaMP, and
AIHT [20], but usually with less computing time.

In this paper, we introduced the first optimization frame-
work for SPArc by searching the optimal spot sparsity solu-
tion using PDASC or we called it SPArc-PDASC. The proposed
study aims to solve the two main challenges (a) simultan-
eous optimization of treatment delivery efficiency and dosi-
metric plan quality; (b) optimization speed, the proposed
approach can be hundreds of times more efficient. The suc-
cessful integration of the PDASC algorithm into SPArc could
serve as one option to provide more delivery-efficient plans.

Material and Methods

Problem formulation

Based on the previously studied beam delivery sequence
model of the new generation of the single room system,
Beaumont’s IBA ProteusONE, proton treatment delivery time
is actually dominated by spot switching time (SSWT) [9].
SSWT is approximately linearly dependent on spot numbers
[8]. Let w ¼ fwigni¼1 be the vector of spot intensity (MU),
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where n is the full (initial) spot number. Spot index set S ¼
f1, 2, :::, ng: wi ¼ 0 means this spot has been removed. The
true spots wi > 0 of nonzero MU form a primal dual active
set denoted by A:

Let U 2 R
m�n be kernel fluence matrix (also called the

dose deposition matrix [21]) simulated using MatRad dose
calculation engine [22], where m is the total number of vox-
els. Denote p0 2 R

m as prescribed dose vector. It is a com-
mon approach to minimize the least-squares fitting, i.e.,
1
2 jjUw � p0jj2l2 [13,23]. Further, by utilizing the sparsity in w 2
R

n, it is possible to introduce efficient solvers for the prob-
lem. In the work, to enforce a sparse solution to the object-
ive function, we consider solving the following l0-regularized
optimization problem:

minimize
w2Rn

1
2
jjUw � p0jj2l2 þ kjjwjjl0 (1a)

subject to w � 0, (1b)

where k > 0 is a regularization parameter, controlling the
sparsity level of the regularized solution, and (1 b) follows
from the fact that w is non-negative.

The necessary and sufficient condition for a coordinate-
wise minimizer w to a problem (1a) is given by [18]

jwi þ dij <
ffiffiffiffiffi
2k

p ) wi ¼ 0
jwi þ dij ¼

ffiffiffiffiffi
2k

p ) wi ¼ 0 or di ¼ 0
jwi þ dij >

ffiffiffiffiffi
2k

p ) di ¼ 0

8><
>: (2)

where d ¼ fdigni¼1 ¼ UTðp0 �UwÞ denotes the dual variable.
For (1 b), we can simply project the estimation of (1a)

onto the space R
n
þ:

Algorithm procedure

Our algorithm includes an outer iteration and inner loop. The
initial spot intensity is chosen as zero vector w0 ¼ 0:
Regularization parameter is chosen among intervals kmin �
k � kmax: In kth outer iteration (k ¼ 1, 2, :::, Kmax), k is given by

kk ¼ 1
2
jjUTp0jjl1 exp ln kmax � k � 1

Kmax � 1
ln

kmax

kmin

� �
(3)

At jth inner loop (j ¼ 1, 2, :::, Jmax), it identifies the active set
from primal variable wj�1 and dual variable dj�1 by condition (2):

Aj ¼ fi : jwj�1
i þ gdj�1

i j >
ffiffiffiffiffiffiffi
2kk

p
g, (4)

where g > 0 is a step size parameter to be adjusted when
condition number of U is large, wj and dj are updated by
solving a (typically small) least-squares problem defined on
the dual active set:

wj
Aj
¼ 0 ð5aÞ

UT
AjUAjwj

Aj ¼ UT
Ajp0 ð5bÞ

dj ¼ UTðp0 �UwjÞ ð5bÞ

8>><
>>:

The complete procedure is summarized below:

Algorithm 1 SPArc-PDASC algorithm

1: Set parameter g,kmin,kmax, Kmax and Jmax.
2: for k¼ 1,2,… ,Kmax do
3: Set kk by formula (3)
4: for j¼ 1,2,… ,Jmax do
5: Compute the Aj by (4)
6: Check the inner stopping criterion Aj�1 ¼ Aj

7: Update the wj and dj by (5)
8: end for
9: Check sparsity for outer stopping criterion
10: end for
11: return w ¼ maxfw,0g, the best solution found

We can adjust the outer stopping criterion in the loop to
obtain the different sparsity level solutions.

Evaluation

Two clinical cases: One intracranial cancer case and one lung
cancer case from a previous study [8] were used for the
evaluation. For each patient, only the primary clinical target
volume (CTV) was considered in the optimization. The pre-
scription dose for the intracranial tumor is 54Gy in 30 frac-
tions (1.8 Gy per fraction) and for the lung tumor is 48Gy in
4 fractions (12Gy per fraction) using stereotactic body radio-
therapy (SBRT) [24]. Their CT resolution is in 2.5mm. Single
arc was used in the planning. Other specific information is
listed in supplemental material table 1.

The cumulative dose volume histogram (DVH) was plotted
for evaluating the plan quality [25]. In addition, the optimiza-
tion time is compared with the original SPArc algorithm
(SPArc-original, [1]) which was implemented in a commercial
treatment planning system (TPS) RayStation (RaySearch
Laboratories AB, Stockholm, Sweden, ver. 6) through in-house
scripts. The optimizer of RayStation RayOptimizer [26] utilizes
the sequential quadratic programming (SQP) software package
NPSOL [27] in which the SQP uses Broyden–Fletcher–Goldfarb–
Shanno (BFGS) updates [21]. The sparsity optimization is imple-
mented by gradually increasing the parameter of the minimal
spot weight. It is one of the limitations when filtering out low-
weight spots in RayStation which prohibits the user to reactive
the filtered spots [28]. SPArc-original is an iterative approach,
which will take much longer time to optimize. The objective
function in RayStation is set as a uniform dose function, which
penalizes the deviation from a certain dose level [29], to com-
pare with l2-norm objective term in PDASC.

Results

We obtained different sparsity-level solutions by manually
adjusting the outer stopping criterion. Figure 1 showed the
comparison between 96.6% high spot sparsity and 11.2%
low sparsity for lung SBRT cases. Their optimized spot inten-
sities were compared in Figure 1(A), which indicates that less
spot number plan has greater intensity. The DVH is
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compared in Figure 1(B). High spot sparsity reduced the plan
quality because of losing too much degree of freedom in
terms of spot number. Their plan dose was demonstrated in
Figure 1(C,D).

Supplemental material Figure s1 showed the comparison
between 93.4% high spot sparsity plan and 11.7% low spars-
ity for the intracranial case. Figure s1A compared their spot
MU. Since high sparsity plan has much fewer spot number,
their spot MU (blue dot, around 0.2MU) are greater than the
low sparsity plan (red circle, around 0–0.05MU). Figure s1B
compared their DVH. High spot sparsity (blue line) loses the
plan quality due to the lack of optimization freedom from
the limited spot number. Figures s1C and s1D show their
plan dose. Spot MU in Figure (1(A)) (about 1.5–2.5MU for
high sparsity plan and 0-0.5MU for low sparsity plan) is
greater than in Figure s1A because SBRT has a lower number
of fractions.

Figure 2 plotted the plan quality and optimization time
with respect to different sparsity level for both intracranial
and lung SBRT case, which are compared with SPArc-original
implemented in RayStation. Figure 2(A,C) showed the plan
quality degraded as the number of spots is reduced. The
plan quality is measured by relative objective value, which is
normalized by the lowest sparsity plan’s clinic objective value
at each case for different methods separately. Compared to
SPArc-original, SPArc-PDASC was able to find a better plan
quality with the same spot sparsity, which could be critical

to the SPArc therapy. In the optimization speed evaluation
(Figure 2(B,D)), the study found that the PDASC could signifi-
cantly reduce the optimization time: this new planning
framework could effectively improve the optimization speed
by a factor of about three hundred on average (8.8 times to
536.5 times from 20%-80% sparsity) compared to the SPArc-
original implemented in RayStation. Opposite to RayStation’s
sparsity optimization through filtering spot from low sparsity
to high sparsity, SPArc-PDASC searches the global sparsity
solution from its zero initial solution. The higher the sparsity,
the less optimization time PDASC spends. This can be theor-
etically explained by Jiao et al. [18]: there is an important
monotonicity relationship on the active set during the
PDASC iteration. The greater the active set size is, the greater
the computation complexity will be (See supplemental
material for complexity analysis).

Discussion

Shortening the beam delivery time (BDT) is important to
radiation therapy which can be used to mitigate the intra-
factional motion [30] and improve the treatment throughput.
PDASC combines the fast local convergence of the active set
technique and the globalizing property of the continuation
technique for sparsity optimization, which demonstrates its
value in proton arc optimization and plan generation. The
study demonstrated that the BDT could be shortened

Figure 1. An example of comparison between high sparsity and low sparsity in a lung SBRT case.The prescription dose is 48 Gy and 12 Gy per fraction. (A) High
sparsity resulted in a higher averaged spot MU. (B) Dose-volume histogram (DVH) per fraction shows low sparsity has better plan quality. (C) Dose distribution for
11.2% sparsity. (D) Dose distribution for 96.6% sparsity.
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through PDASC with a faster optimization speed compared
to the SPArc-original. However, too many constraints on the
BDT might affect the plan quality as the treatment plan
starts losing degrees of freedom in terms of the number of
spots. An optimal proton arc therapy plan is to find a trade-
off between the plan quality and BDT. In our institution’s
proton delivery system, the BDT is reduced by decreasing
the spot number through sparsity optimization. In reality, a
tradeoff might consist of a series of solutions, which could
be given by Pareto surface through multi-criterion optimiza-
tion (MCO) [31]. PDASC could provide a proper optimizer for
MCO search, i.e., the individual point on a Pareto surface.

In the clinic, only spot with MU being greater than a
machine threshold can be delivered. PDASC has separation
from zero property [18]:

min
i2A

wi �
ffiffiffiffiffi
2k

p
(6)

But k could be finally chosen as a very small value in
PDASC iteration, which might not satisfy the machine thresh-
old. How to choose the proper stopping criterion to meet
the machine threshold might be a potential improvement to
this algorithm.

One limitation of this work is that robustness optimization
is not considered in this method. The difficulty is how the
mathematically-defined robustness in this PDASC optimiza-
tion formulation remains uncleared, which will be the focus
of the next development (See supplemental material for
more discussion). Another limitation of this paper is only
investigating spot numbers without considering the spot
scanning paths. Different scanning paths lead to different

dose distributions and BDT due to the contribution of the
unintended transit dose and spot swi time between spots
[32]. A simulated annealing algorithm has been applied to
scanning path optimization of particle therapy beams [33]. It
is a heuristic algorithm to optimize the scanning path for
quasi-discrete scanned beams. PDASC used in this paper
might provide a methodology for a direct method for proton
arc spot scanning path optimization.

Conclusion

The study developed the first fast-planning framework for
proton arc therapy spot-sparsity optimization. Such advance-
ment in spot-sparsity optimization is critical to the SPArc
therapy for an efficient treatment delivery with a balanced
plan quality. This work also paves the roadmap for clinical
implementation in the TPS platform efficiently.
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Figure 2. Compared with SPArc-original implemented in RayStation (Stockholm, Sweden). (A) Brain case objective value vs. sparsity curve using SPArc-PDASC. (B)
Brain otimization time vs. sparsity curve. (C) Lung SBRT case objective value vs. sparsity curve using SPArc-PDASC. (D) Lung SBRT optimization time vs. sparsity
curve.
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