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ABSTRACT
Background and purpose: Hippocampus is a central component for neurocognitive function and
memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation
(CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from
published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive
impairment with the risk of reduced tumor control.
Material and methods: For this dose planning study, a total of 504 hippocampal sparing intensity
modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previ-
ously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to
target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal
mean doses and normal tissue complication probability estimates.
Results: The median mean dose to the hippocampus could be reduced from 31.3GyRBE to 7.3GyRBE
(p< .001), though 20% of these plans were not considered clinically acceptable as they failed one or
more acceptance criterion. Reducing the median mean hippocampus dose to 10.6GyRBE was possible
with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the
lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%,
62.1% and 51.1% to 41.0% (p< .001), 20.1% (p< .001) and 29.9% (p< .001) for task efficiency, organ-
ization and memory, respectively. Estimated tumor control probability was not adversely affected by
HS-IMPT, ranging from 78.5 to 80.5% for all plans.
Conclusions: We present estimates of potential clinical benefit in terms of neurocognitive impairment
and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally
compromising target coverage locally using HS-IMPT.
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Introduction

Primary central nervous system (CNS) tumors are the second
most common type of cancer in children [1]. The most fre-
quent malignant CNS tumor in children is medulloblastoma.
In children above three to five years of age, most medullo-
blastomas are treated with a combination of surgery, chemo-
therapy and craniospinal irradiation (CSI). The treatment
depends on age and tumor-related risk factors, such as
residual tumor volume, M-stage, histology, molecular sub-
groups including various genetic mutations [2]. Treatment
has become more stratified over the last decade, however,
with only minor changes and no new therapeutic modalities.
Most long-term survivors of malignant pediatric CNS tumors
treated with CSI have significant neurocognitive late effects,

and patients irradiated at a younger age tend to have worse
outcomes [3,4]. Recently, in order to reduce the common,
treatment related, neurocognitive side effects, several studies
have investigated hippocampal-sparing (HS) irradiation
modalities [5–10].

Long term childhood cancer survivors constitute a rapidly
growing group of young adults [11]. Since the frequency and
severity of late side effects, such as cognitive dysfunction,
hearing loss, endocrine deficiencies, radio-necrosis and sec-
ondary tumors generally increase with time, they are espe-
cially debilitating for pediatric cancer survivors as they
mature into adulthood [12–15]. Certain parts of the brain
(e.g., the hippocampus) are believed to be more sensitive to
radiation [8,16,17] and neurogenesis occurs within the
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dentate gyrus of the hippocampus [18]. Radiation further
damages hippocampal stem cell differentiation [19] and it is
associated with reduced memory preservation. Consequently,
avoiding high-dose irradiation of the hippocampus should
be a priority [7,20].

No clinical trials of hippocampal sparing in children with
CNS tumors have yet been published. The most compelling
evidence to date comes from the randomized phase III trial
NRG Oncology CC001 that showed significantly lower risk of
cognitive failure in adults with brain metastases in the arm
receiving hippocampal-sparing whole-brain irradiation [21].

We previously studied the feasibility of reducing the dose
to the hippocampi and found IMPT to be remarkably promis-
ing [5]. However, the study was based on generic proton
data and without consideration to clinically accepted proton
therapy protocol for planning and delivery.

In the current work we studied the risk of neurocognitive
impairment from intensity-modulated proton therapy (IMPT)
craniospinal treatment. Specifically, we investigated the pos-
sibility of lowering the hippocampal dose significantly with-
out compromising dose to the whole-brain target, regarding
clinically acceptable (defined as plans acceptable for treat-
ment at our institution) objectives. The deliverability of the
HS IMPT plans was evaluated based on different plan uncer-
tainty and robustness criteria.

Materials and methods

Patients and delineation

We identified 24 eligible patients treated at our institution
between 2005 and 2015. The patients in this study had all
undergone photon CSI treatment. All patients were re-
planned and a total of 504 HS IMPT plans were generated
for the 24 patients (Table 1), with 432 plans evaluating differ-
ent levels of HS and robustness for the elective whole-brain
treatment and 72 plans evaluating the dose contribution
from the boost treatment. The elective target volume was
defined as the whole brain (clinical target volume, CTV)
denoted as CTVelective, disregarding the spinal part of the tar-
get in this study. The hippocampi and the postoperative
resection volume, including residual tumor if any, (denoted
GTV) were contoured on MRI co-registered with CT images
(Figure 1) by an experienced senior radiologist using the
contouring protocol from Radiation Therapy Oncology Group

0933. The boost target volume (denoted CTVboost) was
defined as the GTV plus a 5mm margin. Two patients treated
in earlier years had no GTV contoured; their boost volumes
consisted of the entire posterior fossa.

Treatment planning

The total prescribed dose was 54GyRBE in 1.8 GyRBE per frac-
tion, 23.4 GyRBE from the elective whole-brain plan and
30.6 GyRBE from the boost plan. All plans were normalized so
the mean target volume dose was 100% of the prescribed
dose and robustly optimized using 2%/2mm and 3.5%/3mm
uncertainty criteria in all directions. Treatment plans were
generated using the EclipseTM treatment planning system
v.13.7 (Varian medical systems, Palo Alto, CA, USA). Robust
optimization was carried out on both CTVelective and hippo-
campi using nonlinear universal proton optimizer (NUPO)
v.13.7.15. Three incident fields (90�, 180� and 270� with the
patients positioned head first supine) with field specific tar-
gets, with no range shifter, 3mm spot size and multi-field
optimization were used. For each plan, target, normal tissue
and organs-at-risk (OARs, with the exception of the hippo-
campus for different dose levels) objectives were kept con-
stant to minimize planner bias. Multiple plans were
generated for each hippocampal dose before choosing the
superior plan in terms of hippocampal dose and target
coverage. Minimum dose or coverage of the target area has
been set as a constraint to exclude treatment planning sys-
tem specific effects and there was no difference in plan qual-
ity between using and not using a range shifter despite the
superficial target.

The hippocampal dose objectives were defined in relation
to five different levels of avoidance; 5, 7, 9 (Figure 1), 12 and
15GyRBE with the intent of studying how the target coverage
and plan quality was affected by the different levels of hip-
pocampal sparing. These levels were chosen as representa-
tive levels of what can be accomplished using higher or
lower priorities on target and hippocampus as well as other
OARs. Treatment plans with no priority or dose restriction to
the hippocampus (denoted standard CSI plan), were gener-
ated for comparison.

Analysis and evaluation metrics

Treatment plans were exported to the Computational
Environment for Radiotherapy Research (CERR) [22] and sub-
sequently analyzed in MATLAB release 2019a (The
MathWorks Inc., Natick, MA, USA). Plans were evaluated with
respect to target coverage, homogeneity index, maximum
dose to target and mean and maximum doses to OARs.

Target coverage was evaluated by calculating the percent-
age of the target volume receiving �95% (V95%) and �107%
(V107%) of the prescribed dose. The homogeneity index was
calculated according to a definition proposed by Spruijt
et al. [23]. The dose to 0.03 cm3 of the target volume and
brainstem was used to represent clinically relevant maximum
dose received by these structures.

Table 1. Characteristics of the 24 pediatric patients included in the study.

n %

Sex
Male 12 50
Female 12 50

Median Range
Age (y) 9 4–18
Distancea (cm)
CTV - Hippocampus 1.4 1.0–4.3

Target and OAR volumes (cm3)
CTVelective 1427.2 1137.7–1770.7
CTVboost 44.7 11.5–228.3
Hippocampus 3.4 0.8–10.6

aDefined as the distance between the center of the hippocampus to the clos-
est point of CTVboost.
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Plans were deemed clinically acceptable if the following
conditions were met: V95% �95% and V107% �107% of pre-
scribed dose, D0.03 cc �110% of prescribed dose, D0.03 cc

�107% of the prescribed dose to the brainstem, dose to the
chiasm �50GyRBE and a homogeneity index for CTVelective of
�95 where 100 constitutes a completely homogenous dose
to the region of interest.

The association between hippocampal dose and patient
characteristics such as GTV size, hippocampal size and the
distance between CTVboost and the hippocampus (defined as
the center of the hippocampus to the closest point of
CTVboost) was evaluated using scatter plots and regression
models.

Tumor control probability (TCP) and neurocognitive
impairment normal tissue complication probability (NTCP)
was estimated using previously published models [5,24,25].
The assumption for using these models is that the dose to
the temporal lobe represents the dose to the hippocampus
as the critical OAR for cognitive function. The TCP dose-
response model has been evaluated against recently pub-
lished data [26] to test their applicability and updated
(Supplementary Table S1) for use in this study.

Statistical analysis

Shapiro–Wilk test and visual histogram inspection were used
to assess normality and equal variance. Paired t-tests were
used to compare hippocampal mean doses and NTCP esti-
mates, where p< .05 was considered statistically significant.

Stepwise comparison between each of the hippocampal
dose objectives was performed; Standard CSI plan vs.
15 GyRBE vs. 12GyRBE vs. 9 GyRBE vs. 7 GyRBE vs. 5 GyRBE,
respectively.

Results

It was possible to reduce the dose to the hippocampus con-
siderably with minimal compromise to the whole-brain target
coverage. However, the lowest dose constraint to the hippo-
campus was related to a higher risk of one or multiple target
objectives failing clinically acceptable criteria (Figure 2). The
different robust optimization parameters used resulted in
similar plan quality with some minor differences.

The median mean dose (range) to the hippocampus from
whole-brain and boost plans was 7.1 GyRBE (5.0 to 11.7 GyRBE,
p< .001), 9.0 GyRBE (6.8 to 13.7 GyRBE, p< .001), 10.4 GyRBE (8.4
to 15.4 GyRBE, p< .001), 13.0 GyRBE (11.0 to 17.8 GyRBE,
p< .001), 15.9 GyRBE (13.9 to 20.5 GyRBE, p< .001) and
31.4 GyRBE (23.3 to 39.5 GyRBE, p< .001) for 5, 7, 9, 12,
15 GyRBE and standard CSI plans, respectively (Figure 2).

There was a clear correlation between hippocampus dose
and distance between the hippocampus and CTVboost
(Supplementary Figure S1). Trends were seen for the correl-
ation between GTV and hippocampal size with mean hippo-
campal dose (Figure 3(b,c)). The strongest correlation was
seen for standard CSI plans where HS was not applied. The
hippocampus dose was reduced with approximately
4.7 GyRBE and 1.3 GyRBE per cm distance between the

Figure 1. Absorbed dose in color-wash 95–107% for (a) transversal, (b) sagittal and (c) frontal view and absorbed dose in color-wash 2–107% for (d) transversal. A
transversal slice of the (e) CT image and (f) T1-weighted MRI. All images show the contoured hippocampus (yellow contour). The hippocampal dose constraint was
set to 9 GyRBE for the elective target.
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hippocampi and CTVboost for standard CSI plan and 9GyRBE
for HS plans, respectively.

The TCP remained relatively consistent with an estimated
78.5–80.5% event free survival (EFS) for all evaluated plans
and patients. The NTCP was calculated for cognitive impair-
ment (Table 2) which was divided into three major domains;
Task efficiency (Figure 3(a)), Organization (Figure 3(b)) and
Memory (Figure 3(c)). These domains are derived from
Armstrong et al. [24] as they are reported upon being parts
of the quality-of-life questioners in that study.

Discussion

This study shows that it is possible to reduce the dose to the
hippocampus considerably with minimal impact on whole-
brain target coverage with IMPT, in particular when inspect-
ing dose-volume histograms. Even with acceptable target
coverage, there might, however, be hot- and cold-spots
throughout that would affect clinical acceptability, which is
why this was explicitly evaluated. The high HI can be
explained by the fact that the hippocampus only constitutes
roughly 1% of the total irradiated volume. Gondi et al. [27]
found that the HS volume with added planning-risk expan-
sion accounted for about 2.1% of the whole-brain in adults.
The lowest HS dose constraints tested in this study (5GyRBE)
might be difficult to achieve for some patients, especially
depending on tumor location and GTV size. This is in agree-
ment with results from a previous study [6] where plans
were not based on a clinical protocol for treatment planning
as well as on robust plan optimization. For the 9GyRBE HS
constraint, all plans were deemed clinically acceptable, dem-
onstrating the possibility to lower the mean dose to the
hippocampus by 20GyRBE and still achieve acceptable plans.

Since tumor control remains the primary goal of HS-
CSI, it might be inappropriate to spare the hippocampus
for patients with high-risk medulloblastoma (MB), as
their risk of recurrence may be higher [28]. Recently, it
was also shown that lowering the dose to the entire cra-
niospinal volume to 18 Gy for patients with standard-risk
MB resulted in lower EFS and is currently not recom-
mended [26]. Lately, laudable efforts have been made
toward HS and the comprehensive phase III NRG
Oncology CC001 trial demonstrated that for adults with
CNS metastases, it is possible to significantly spare
short-term cognitive function without deterioration of
either progression-free survival and overall survival in a
randomized setting [21].

Most modern radiotherapy techniques are able to spare
the hippocampus to some extent [5,8–10,27] although the
data suggests that IMPT would be the preferred alternative
[5,10], especially for novel proton radiotherapy techniques
[29]. In this study, we show that it is possible to considerably
spare the hippocampus using IMPT. Doses to the hippocam-
pus found in this study are comparable to previously pub-
lished research [5,6,10]. Blomstrand et al. [5] determined that
it was possible to spare the hippocampus to approximately
10GyRBE using IMPT without compromising the V95%
CTVelective coverage. An important addition from this study is
the use of robust optimization instead of using approaches
mainly used for photon treatments, ensuring that IMPT plans
will be deliverable.

The general consensus is that proton therapy is safe,
effective and recommended for many types of pediatric
cancers [30] and pediatric patients are, furthermore,
expected to benefit from IMPT considerably even though
the assumption is that radiation-induced adverse effects

Figure 2. Mean hippocampus dose (GyRBE) for all patients optimized with 2%/2mm where blue bars indicate a clinically acceptable plan and red bars a plan
deemed unacceptable regarding target coverage (V95% �95% of prescribed dose), homogeneity (�95), maximum target dose (D0.03 cc �110% of prescribed dose)
and doses to the OARs (D0.03 cc �107% of the prescribed dose to the brainstem, dose to the chiasm �50 GyRBE). The black line corresponds to each of the patients
showing mean hippocampus dose (GyRBE) for the plans optimized without any priority or dose restriction (standard CSI plan).

ACTA ONCOLOGICA 137



might be more substantial for these patients [31,32].
While there are papers that discuss the importance of
reducing late side effects as these can increase with time

[12–15], this is still very uncertain. Spiegler et al. states
that intellectual function declined quickly in the first few
years after treatment, and then more gradually [12].

Figure 3. The boxplots represent the distribution of risk of impairment (%) among the 24 patients (red scatter) given as median, 25th–75th percentiles and range
for each of the optimizer objectives for (a) task efficiency, (b) organization and (c) memory. For clarification purpose, the y-axes are presented in different ranges,
most suitable for each dataset.
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Proton radiation generally show dosimetric benefits com-
pared to photon radiation, however, any clinical benefit in
terms of reduction in cognitive impairment is still uncertain
[33,34]. We investigated the predicted risk of neurocognitive
impairment and therefore any conclusions to whether spar-
ing of the hippocampus translates into a clinical benefit
remain exploratory since there are many areas of the brain
that may contribute to cognitive function.

We estimated the clinical benefit in terms of the reduced
risk of neurocognitive impairment using published dose-
response models. These dose-response models are of course
subject to considerable uncertainty but a lower dose to the
hippocampus clearly estimates a reduced risk of neurocogni-
tive impairment. The available TCP model is not stratified
based on different molecular subgroups or patient’s perform-
ance status and is based on data from standard-risk MB
patients [5,24,25]. The current multimodality treatment
results in a five-year EFS of 75–80% for standard-risk patients
[35] which compares well to our TCP estimates of a five-year
EFS of 78.5–80.5%. As the hippocampus constitutes only a
small volume of the whole brain, a very limited drop in esti-
mated TCP was found for our HS treatment plans.

According to our risk estimates, there is a statistically sig-
nificant reduction in the risk of cognitive impairment for all
dose levels where the hippocampus was avoided. Goda et al.
[36] found that a hippocampal mean dose of less than 30Gy
did not affect intelligence quotient in children, adolescents
and young adults. Although not fully comparable to our
results, these studies further support treatment strategies
avoiding irradiation of the hippocampi.

When sparing a critical OAR such as the hippocampus, it
is crucial that the delineation is correct, which is not always
trivial [37]. Uncertainties in volume delineation have been
demonstrated and some studies indicate that inconsistencies
presumably are some of the most substantial types of errors
[38,39]. This predominantly applies to target delineation but
in many cases also to OARs. In an attempt to mitigate the
uncertainties surrounding the hippocampus, all plans were
robustly optimized on this structure. Another challenge is
the central location and somewhat odd shape of the hippo-
campus where the use of IMPT might be of particular

advantage. It is, however, important to consider the com-
plexities of linear energy transfer of protons and the relative
biological effect along the proton beam, where physical dose
may no longer be the best indicator of biologic effect
[40,41]. Encouragingly, a recent study found no increase in
CNS injury from proton treatment for MB, and no correlation
with RBE compared to photon treatments [42].

In conclusion, we demonstrate the potential clinical bene-
fit of reduced neurocognitive impairment based on robustly
optimized HS IMPT plans, with marginal effect to target
coverage and thereby estimated tumor control.
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