Effect of resistance training through in-person and teleconferencing sessions in rehabilitation of acute stroke patients
DOI:
https://doi.org/10.2340/jrmcc.v7.18647Keywords:
stroke, rehabilitation, anaerobic/strength training, resistance bands, telemedicine, telerehabilitationAbstract
Objective: To determine whether application of a strength training regimen yields measurable results on stroke survivors and compare different methods for the proposed intervention.
Design, Patients and Methods: Ninety stroke patients were recruited from the neurological clinic of a local third-level clinic. Sixty patients participated in a strength training regimen with trainings taking place 3 times a week for 12 weeks with the use of resistance bands. Thirty of these patients were given face-to-face sessions and 30 patients were given trainings through an on-line platform. The last 30 patients who comprised the control group only followed usual care after the stroke.
Results: The applied strength regimen had a statistically significant effect on Visual Analog Scale scores of stroke patients who received it (p = 0.009), as well as in the teleconferencing group (p = 0.004). The measured arteriovenous oxygen difference was elevated for stroke patients who received the intervention as a whole (p = 0.007). Patients who were trained in person and the ones who were trained via teleconferencing yielded similar results as evaluated through the VAS index.
Discussion and Conclusion: Administration of strength training 3 times weekly for 12 weeks to stroke patients yielded measurable results in terms of general function and quality of life.
Downloads
References
Bower KJ, Louie J, Landesrocha Y, Seedy P, Gorelik A, Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil 2015; 12: 63.
https://doi.org/10.1186/s12984-015-0057-x DOI: https://doi.org/10.1186/s12984-015-0057-x
Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): global stroke Fact Sheet 2022. Int J Stroke 2022; 17: 18–29.
https://doi.org/10.1177/17474930211065917 DOI: https://doi.org/10.1177/17474930211065917
Young J, Forster A. Review of stroke rehabilitation. BMJ 2007; 334: 86–90.
https://doi.org/10.1136/bmj.39059.456794.68 DOI: https://doi.org/10.1136/bmj.39059.456794.68
McGlinchey MP, James J, McKevitt C, Douiri A, Sackley C. The effect of rehabilitation interventions on physical function and immobility-related compli-cations in severe stroke: a systematic review. BMJ Open 2020; 10: e033642.
https://doi.org/10.1136/bmjopen-2019-033642 DOI: https://doi.org/10.1136/bmjopen-2019-033642
Veldema J, Jansen P. Resistance training in stroke rehabilitation: systematic review and meta-analysis. Clin Rehabil 2020; 34: 026921552093296.
https://doi.org/10.1177/0269215520932964 DOI: https://doi.org/10.1177/0269215520932964
Bindawas S, Vennu V. Stroke rehabilitation. A call to action in Saudi Arabia. Neurosci J 2016; 21: 297–305.
https://doi.org/10.17712/nsj.2016.4.20160075 DOI: https://doi.org/10.17712/nsj.2016.4.20160075
Oyanagi K, Kitai T, Yoshimura Y, Yokoi Y, Ohara N, Kohara N, et al. Effect of early intensive rehabilitation on the clinical outcomes of patients with acute stroke. Geriatr Gerontol Int 2021; 21: 623–628.
https://doi.org/10.1111/ggi.14202 DOI: https://doi.org/10.1111/ggi.14202
Chu CL, Chen YP, Chen CC, Chen CK, Chang HN, Chang CH, et al. Functional recovery patterns of hemorrhagic and ischemic stroke patients under post-acute care rehabilitation program. Neuropsychiatr Dis Treat 2020; 16: 1975–1985.
https://doi.org/10.2147/NDT.S253700 DOI: https://doi.org/10.2147/NDT.S253700
Clarke D, Forster A. Improving post-stroke recovery: the Role of the Multidisciplinary Health Care Team. J Multidiscip Healthc 2015; 8: 433–442.
https://doi.org/10.2147/JMDH.S68764 DOI: https://doi.org/10.2147/JMDH.S68764
Chiu CC, Lin HF, Lin CH, Chang HT, Hsien HH, Hung KW, et al. Multidisciplinary care after acute care for stroke: a prospective comparison between a Multidisciplinary Post-Acute Care Group and a Standard Group matched by propensity score. Int J Environ Res Public Health 2021; 18: 7696.
https://doi.org/10.3390/ijerph18147696 DOI: https://doi.org/10.3390/ijerph18147696
King RB. Quality of life after stroke. Stroke 1996; 27: 1467–1472.
https://doi.org/10.1161/01.STR.27.9.1467 DOI: https://doi.org/10.1161/01.STR.27.9.1467
Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta – analysis. J Am Heart Assoc 2016; 5: e002495.
https://doi.org/10.1161/JAHA.115.002495 DOI: https://doi.org/10.1161/JAHA.115.002495
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47: e98–e169.
https://doi.org/10.1161/STR.0000000000000098 DOI: https://doi.org/10.1161/STR.0000000000000098
McDonnell MN, Smith AE, Mackintosh SF. Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch Phys Med Rehabil 2011; 92: 1044–1052.
https://doi.org/10.1016/j.apmr.2011.01.021 DOI: https://doi.org/10.1016/j.apmr.2011.01.021
Mayer JF, Sandberg CW, Mozeiko J, Madden EB, Murray LL. Cognitive and linguistic benefits of aerobic exercise: a state-of-the-art systematic review of the stroke literature. Front Rehabil Sci 2021; 2: 785312.
https://doi.org/10.3389/fresc.2021.785312 DOI: https://doi.org/10.3389/fresc.2021.785312
Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, Vittorio TJ. Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J Cardiol 2017; 9: 134.
https://doi.org/10.4330/wjc.v9.i2.134 DOI: https://doi.org/10.4330/wjc.v9.i2.134
Gordon CD, Wilks R, McCaw-Binns A. Effect of aerobic exercise (walking) training on functional status and health-related quality of life in chronic stroke survivors. Stroke 2013; 44: 1179–1181.
https://doi.org/10.1161/STROKEAHA.111.000642 DOI: https://doi.org/10.1161/STROKEAHA.111.000642
Aidar FJ, de Oliveira RJ, Silva AJ, de Matos DG, Mazini Filho ML, Hickner RC, et al. The influence of resistance exercise training on the levels of anxiety in ischemic stroke. Stroke Res Treat 2012; 2012: 1–6.
https://doi.org/10.1155/2012/298375 DOI: https://doi.org/10.1155/2012/298375
Johansson T, Wild C. Telerehabilitation in stroke care – a systematic review. J Telemed Telecare 2011; 17: 1–6.
https://doi.org/10.1258/jtt.2010.100105 DOI: https://doi.org/10.1258/jtt.2010.100105
Stephenson A, Howes S, Murphy PJ, Deutsch JE, Stokes M, Pedlow K, et al. Factors influencing the delivery of telerehabilitation for stroke: a systematic review. Javadi AH, editor. PLoS One 2022; 17: e0265828.
https://doi.org/10.1371/journal.pone.0265828 DOI: https://doi.org/10.1371/journal.pone.0265828
Contrada M, Arcuri F, Tonin P, Pignolo L, Mazza T, Nudo G, et al. Stroke telerehabilitation in Calabria: a health technology assessment. Front Neurol 2022; 12: 777608.
https://doi.org/10.3389/fneur.2021.777608 DOI: https://doi.org/10.3389/fneur.2021.777608
Laver K, Osborne K. Telerehabilitation in stroke. Elsevier eBooks, Pennsylvania, USA; 2022, p. 43–57. DOI: https://doi.org/10.1016/B978-0-323-82486-6.00004-6
Balestroni G, Bertolotti G. EuroQol-5D (EQ-5D): an instrument for measuring quality of life. Monaldi Arch Chest Dis 2015; 78: 155–159.
https://doi.org/10.4081/monaldi.2012.121 DOI: https://doi.org/10.4081/monaldi.2012.121
Kontodimopoulos N, Pappa E, Niakas D, Yfantopoulos J, Dimitrakaki C, Tountas Y. Validity of the EuroQoL (EQ-5D) instrument in a Greek general populat-ion. Value Health 2008; 11: 1162–1169.
https://doi.org/10.1111/j.1524-4733.2008.00356.x DOI: https://doi.org/10.1111/j.1524-4733.2008.00356.x
Euroqol. EQ-5D [Internet]. Euroqol.org; 2019. [Cited on 15 December 2023] Available from: https://euroqol.org/
Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142–148.
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x DOI: https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and validity of the timed up and go test with a motor task in people with chronic stroke. Arch Phys Med Rehabil 2017; 98: 2213–2220.
https://doi.org/10.1016/j.apmr.2017.03.008 DOI: https://doi.org/10.1016/j.apmr.2017.03.008
Berg K. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can 1989; 41: 304–311.
https://doi.org/10.3138/ptc.41.6.304 DOI: https://doi.org/10.3138/ptc.41.6.304
Miyata K, Tamura S, Kobayashi S, Takeda R, Iwamoto H. Berg Balance Scale is a valid measure for plan interventions and for assessing changes in postural balance in patients with stroke. J Rehabil Med 2022; 54: jrm00359.
https://doi.org/10.2340/jrm.v54.4443 DOI: https://doi.org/10.2340/jrm.v54.4443
Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport 1999; 70: 113–119.
https://doi.org/10.1080/02701367.1999.10608028 DOI: https://doi.org/10.1080/02701367.1999.10608028
Mong Y, Teo TW, Ng SS. 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch Phys Med Rehabil 2010; 91: 407–413.
https://doi.org/10.1016/j.apmr.2009.10.030 DOI: https://doi.org/10.1016/j.apmr.2009.10.030
Troosters T, Vilaro J, Rabinovich R, Casas A, Barbera JA, Rodriguez-Roisin R, et al. Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease. Eur Respir J 2002; 20: 564–569.
https://doi.org/10.1183/09031936.02.02092001 DOI: https://doi.org/10.1183/09031936.02.02092001
Macchiavelli A, Giffone A, Ferrarello F, Paci M. Reliability of the six-minute walk test in individuals with stroke: systematic review and meta-analysis. Neurol Sci 2020; 42: 81–87.
https://doi.org/10.1007/s10072-020-04829-0 DOI: https://doi.org/10.1007/s10072-020-04829-0
Vella CA, Ontiveros D, Zubia RY. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol 2010; 111: 915–923.
https://doi.org/10.1007/s00421-010-1554-z DOI: https://doi.org/10.1007/s00421-010-1554-z
De Cort SC, Innes JA, Barstow TJ, Guz A. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. J Physiol 1991; 441: 501–512.
https://doi.org/10.1113/jphysiol.1991.sp018764 DOI: https://doi.org/10.1113/jphysiol.1991.sp018764
Thomas HD, Gaos C, Reeves TJ. Resting arteriovenous oxygen difference and exercise cardiac output. J Appl Physiol 1962; 17: 922–926.
https://doi.org/10.1152/jappl.1962.17.6.922 DOI: https://doi.org/10.1152/jappl.1962.17.6.922
Kim Y, Lai B, Mehta T, Thirumalai M, Padalabalanarayanan S, Rimmer JH, et al. Exercise training guidelines for multiple sclerosis, stroke, and Parkinson disease. Am J Phys Med Rehabil 2019; 98: 613–621.
https://doi.org/10.1097/PHM.0000000000001174 DOI: https://doi.org/10.1097/PHM.0000000000001174
Schoenfeld BJ, Grgic J, Van Every DW, Plotkin DL. Loading recommendations for muscle strength, hypertrophy, and local endurance: a re-examination of the repetition continuum. Sports 2021; 9: 32.
https://doi.org/10.3390/sports9020032 DOI: https://doi.org/10.3390/sports9020032
Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Müller S, Scharhag J. The intensity and effects of strength training in the elderly. Deutsches Aerzteblatt Online 2011; 108: 359–364.
https://doi.org/10.3238/arztebl.2011.0359 DOI: https://doi.org/10.3238/arztebl.2011.0359
Davis K. 33 resistance band exercises you can do literally anywhere [Internet]. Greatist. Healthline Media; 2015. [Cited on 15 December 2023] Available from: https://greatist.com/fitness/resistance-band-exercises.
Eng JJ. Strength training in individuals with stroke. Physiother Can 2004; 56: 189.
https://doi.org/10.2310/6640.2004.00025 DOI: https://doi.org/10.2310/6640.2004.00025
Gambassi BB, Coelho-Junior HJ, Schwingel PA, Almeida FJF, Gaspar Novais TM, Lauande Oliveira PL, et al. Resistance training and stroke: a critical analysis of different training programs. Stroke Res Treat 2017; 2017: 1–11.
https://doi.org/10.1155/2017/4830265 DOI: https://doi.org/10.1155/2017/4830265
Tole G, Raymond MJ, Williams G, Clark RA, Holland AE. Strength training to improve walking after stroke: how physiotherapist, patient and workplace factors influence exercise prescription. Physiother Theory Pract 2020; 38: 1–9.
https://doi.org/10.1080/09593985.2020.1839986 DOI: https://doi.org/10.1080/09593985.2020.1839986
Seron P, Oliveros MJ, Gutierrez-Arias R, Fuentes-Aspe R, Torres-Castro RC, Merino-Osorio C, et al. Effectiveness of telerehabilitation in physical thera-py: a rapid overview. Phys Ther 2021; 101: pzab053.
https://doi.org/10.1093/ptj/pzab053 DOI: https://doi.org/10.1093/ptj/pzab053
Leslie S, Tan J, McRae PJ, O’Leary SP, Adsett JA. The effectiveness of exercise interventions supported by telerehabilitation for recently hospitalized adult medical patients: a systematic review. Int J Telerehabil 2021; 13: e6356.
https://doi.org/10.5195/ijt.2021.6356 DOI: https://doi.org/10.5195/ijt.2021.6356
Bernal-Utrera C, Montero-Almagro G, Anarte-Lazo E, Gonzalez-Gerez JJ, Rodriguez-Blanco C, Saavedra-Hernandez M. Therapeutic exercise intervent-ions through telerehabilitation in patients with post COVID-19 symptoms: a systematic review. J Clin Med 2022; 11: 7521.
https://doi.org/10.3390/jcm11247521 DOI: https://doi.org/10.3390/jcm11247521
Seid AA, Aychiluhm SB, Mohammed AA. Effectiveness and feasibility of telerehabilitation in patients with COVID-19: a systematic review and meta-analysis. BMJ Open 2022; 12: e063961.
https://doi.org/10.1136/bmjopen-2022-063961 DOI: https://doi.org/10.1136/bmjopen-2022-063961
Published
How to Cite
License
Copyright (c) 2024 Nikolaos Kintrilis, Antonis Kontaxakis, Anastasios Philippou
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles in JRM-CC are Open Access and, unless otherwise specified, distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.