ABSTRACT. A prospective study of 104 patients with trochanteric hip fractures was undertaken with particular regard to postoperative complications and rehabilitation at the follow-up 3 months later. The mortality was 29%, more on the social function prior to the fracture than on the patient's age. Osteosynthesis was performed with the Richards sliding screw-plate system. The most frequent complications were a cardiovascular and pulmonary nature. Technical failure was encountered in 10%. Hip function was excellent or good in 65%. In 40% the ability to walk remained unchanged after the operation. Seventy-five per cent of the patients returned to their own homes, although 51% were more dependent on the social welfare system than before the fracture. The social function prior to the fracture determined the social function after the fracture to a greater extent than did the patient's age.

Key words: Rehabilitation, trochanteric fractures, hip fractures, internal fixation, mortality

Among the devices available for internal fixation of trochanteric hip fractures, the sliding screw-plate has gained considerable acceptance in the treatment of both stable and unstable fractures (6, 9, 11).

The literature concerning the treatment of extra-capsular hip fractures is comprehensive. However, few studies have dealt with the early postoperative complications and social rehabilitation, and when the present study was designed, no prospective study had been published concerning the sliding screw method.

The purpose of this paper was to elucidate the technical failures and the clinical complications as well as the social rehabilitation within the first 3 months postoperatively in patients treated with the Richards sliding screw-plate system for trochanteric hip fractures.

MATERIAL AND METHODS

The series included 104 consecutive patients with trochanteric hip fractures admitted to the hospital during the period January 1st 1981 to December 1st 1982. Seventy-four were women with a mean age of 78 years (range 39-96) and 29 men with a mean age of 73 years (range 36-96).

The fractures were divided into stable and unstable according to Jørgensen (14). Postoperatively, early weight-bearing within 5 days was emphasized unless the fracture was severely comminuted. The patients were followed radiographically and clinically for 3 months. All X-rays were evaluated by the authors.

Technical failure was defined as any complicating fracture, bending, breakage of the implant or dissociation of the implant in relation to the bone. Telescoping of the screw was recorded.

On admission to the hospital and after 3 months the patients were assessed and classified into four social function groups according to their dependence on the social welfare system (21). The ability to walk prior to the fracture and at the follow-up at 3 months was recorded as well as the pain and postoperative movement of the hip. The results were classified into four groups using the Stinchfield hip fracture classification (20).

RESULTS

Associated diseases at the admission were common (Table I) and associated fractures occurred in 10% (10/104) of the patients. Twenty-one of the patients died within 3 months after the operation; causes of death are listed in Table II. Thus 83 patients (83 fractures) were followed for 3 months. Of these, 26 fractures were classified as stable and 57 as unstable.

The clinical postoperative complications are listed in Table III, the most frequent being a cardiovascular or pulmonary nature. Deep infection occurred in 2 patients (2%). However, the implant was not removed and the fractures healed.

Technical failures were encountered in 8 cases (10%), all among unstable fractures. Varus dislocation, being the most frequent (5 cases), was always combined with cutting of the screw in an osteoporotic femoral head. In 3 cases the telescoping action of the sliding screw failed, and was followed by a slight penetration of the femoral head, but without...
clinical symptoms. Altogether, telescoping of the screw occurred in 65 cases (76%). There were no cases of primary penetration of the femoral head, and no fracture dislocation due to telescoping of the screw was observed. One patient developed necrosis of the femoral head.

Ability to walk prior to and after the fracture is illustrated in Table IV. Of the 83 patients reviewed, 47 (57%) had a reduced ability to walk prior to the injury. In 33 cases (40%), ability to walk remained unchanged after the operation, in 23 cases (28%) it deteriorated by one grade and in 27 cases (33%) by two grades or more.

According to the Stinchfield classification of hip function 3 months postoperatively (20), 81% (21/26) of the stable fractures and 65% (36/57) of the unstable fractures were classified as excellent or good (Table V). However, this difference was not statistically significant (0.2; p<0.1, χ²-test). The assignment to pre-fracture social function is shown in Table VI. Dependence on the social welfare system was found to increase with age (p<0.01, χ²-test). Among patients admitted from home, 68% survived for 3 months. Seventeen (25%) were discharged to nursing homes and were living there at the follow-up. Seventy-five per cent of the patients (51/68) were back in their homes after 3 months, although 51% (26/51) were more dependent on the social welfare system than before the fracture (Table VII). A multiple logistic regression analysis revealed that the pre-fracture social function group determined the postoperative social function groups to a greater extent than did the age of the patients (p<0.05).

The mortality rate among patients who came from their own homes was only 14% (11/79) compared with 40% (10/25) of those who came from institutions (Table VII). This difference was statistically significant (p<0.05, χ²-test).

As shown in Table VII the risk of death or deterioration among patients admitted from home was 58% (45/79) and 62% for all patients admitted to the hospital.

The hospital mortality rate was 6% (6/106), but at the follow-up, mortality had increased to 20% (21/106). As seen in Table VIII, the mortality rate increased with increasing social dependence as classified on admission, although the median age in the group also increased (Table VI). By applying a multiple logistic regression analysis, mortality was found to depend more on pre-fracture social function than on the age of the patient (p<0.05).

DISCUSSION

The distribution of sex and age in the present study are comparable with other studies (9,11,19). Also the frequency of stable and unstable fractures follows the pattern of other series (13), but in contrast to this, Wolfgang et al. (22) reported a high incidence of stable fractures (79%).

As expected, there were more patients with technical problems in the unstable fracture group. In these, a primary stable fixation is difficult to achieve, and a failure rate of 10% was encountered. Failure rates as low as 4-7%, depending on the fracture classification system, have been reported by Mulhall et al. (17), Jensen et al. (11) and Heyse-Moore et al. (9). However, Friedberg et al. (7) encountered failures in 18% and Wolfgang et al. (22) in 19%.

The telescoping effect of the sliding screw allows the fracture ends to impact during weight-bearing until bony support is established across the fracture line. Jensen et al. (11) using the same fracture classification system as the present study, reported a telescoping of the screw in 49% compared with 76% in this study. However, no secondary fracture dislocation due to telescoping was observed.

In 2 patients, deep infection occurred. However, both fractures healed in accordance with the observation that fractures will heal in spite of infection if the osteosynthesis is stable (18).

At 3 months, 40% of the patients had recovered the walking ability they had before the operation. Similar figures have been reported by Clauson (4) and Sahlgren (19). Of the 27 patients (Table IV) whose ability to walk deteriorated two grades or
Table I. Associated diseases and fractures in 46 patients on admission to the hospital

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No. of cases</th>
<th>Fractures</th>
<th>No. of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitiv, psychosis, neuritis</td>
<td>18</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Dizziness</td>
<td>12</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>11</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>7</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Prostate hyperplasia</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Primary obstructive disease</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Chronic alcoholism</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Below-knee amputation</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>104</td>
<td>33</td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

Table II. Causes of postoperative death

<table>
<thead>
<tr>
<th>Disease</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular failure</td>
<td>11</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>3</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>1</td>
</tr>
<tr>
<td>Renal failure</td>
<td>1</td>
</tr>
<tr>
<td>Gastrintestinal bleeding</td>
<td>1</td>
</tr>
<tr>
<td>Stringlif of the bowel</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

Table III. The postoperative complications in 83 patients

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitiv, psychosis, neuritis</td>
<td>5</td>
</tr>
<tr>
<td>Dizziness</td>
<td>12</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>11</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>7</td>
</tr>
<tr>
<td>Prostate hyperplasia</td>
<td>6</td>
</tr>
<tr>
<td>Primary obstructive disease</td>
<td>6</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>3</td>
</tr>
<tr>
<td>Chronic alcoholism</td>
<td>2</td>
</tr>
<tr>
<td>Below-knee amputation</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

Table IV. Ability to walk prior to and after the operation

<table>
<thead>
<tr>
<th>Before operation</th>
<th>Grade</th>
<th>1</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>32</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>53</td>
<td>12</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

Table V. Function of the affected hip 3 months postoperatively in relation to the type of fracture

<table>
<thead>
<tr>
<th>Fracture</th>
<th>Stable</th>
<th>Unstable</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Good</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Fair</td>
<td>4</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>57</td>
<td>83</td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

Table VI. Assignment to social function groups on admission to hospital

<table>
<thead>
<tr>
<th>Social function groups</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>32</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Median age</td>
<td>67</td>
<td>77</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>I: Independent; manages everything; capable of working</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II: Slightly dependent; manages household chores; meals-on-wheels; home-help < 4 hours/week; manageable personal needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III: Moderately dependent; Home-help > 4 hours/week; possibly needs district nurse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV: Totally dependent; living in nursing home or long-term nursing at home</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

Table VII. Deterioration of social function and mortality 3 months after trochanteric fracture

<table>
<thead>
<tr>
<th>Pre-fracture assessment into social function groups</th>
<th>Deaths (%)</th>
<th>Social function groups at 3-month follow-up</th>
<th>Risk of death or deterioration of social function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>32</td>
<td>3 (9.4%)</td>
<td>11 6 9 3</td>
</tr>
<tr>
<td>Group II</td>
<td>23</td>
<td>3 (13.0%)</td>
<td>11 6 11 3</td>
</tr>
<tr>
<td>Group III</td>
<td>24</td>
<td>5 (20.8%)</td>
<td>8 11 10</td>
</tr>
<tr>
<td>Group IV</td>
<td>25</td>
<td>10 (40.0%)</td>
<td>13 15 10</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>21 (20.2%)</td>
<td>11 12 28 32</td>
</tr>
</tbody>
</table>

Sved J Rehab Med 17

DISCUSSION

The distribution of sex and age in the present study are comparable with other studies (9, 11, 19). Also the frequency of stable and unstable fractures follows the pattern of other series (33), but in contrast to this, Wolfgang et al. (22) reported a high incidence of stable fractures (79%). As expected, there were more patients with technical problems in the unstable fracture group. In these, a primary stable fixation is difficult to achieve, and a failure rate of 10% was encountered. Failure rates as low as 4-7%, depending on the fracture classification system, have been reported by Malholland et al. (17), Jensen et al. (11) and Heyse-Moore et al. (9). However, Friedman et al. (7) encountered failures in 18% and Wolfgang et al. (22) in 19%. The telescoping effect of the sliding screw allows the fracture ends to impact during weight-bearing until bony support is established across the fracture. Jensen et al. (11) using the same fracture classification system as the present study, reported a telescoping of the screw in 49% compared with 76% in this study. However, no secondary fracture distortion due to telescoping was observed.

In patients, deep infection occurred. However, both fractures healed in accordance with the observation that fractures will heal in spite of infection if the osteosynthesis is stable (18). At 3 months, 40% of the patients had recovered the walking ability they had before the operation. Similar figures have been reported by Clawson (4) and Sahlinradn (19). Of the 27 patients (Table IV) whose ability to walk deteriorated two grades or
more, 2 patients underwent below-knee amputation during the postoperative course, because of arterio-
sclerotic gangrene of the foot. 8 had complicating
fractures of the extremities (Table 1) and 14 suf-
ffered from pain due to telescoping of the screw.
Two patients had severe contracture of the hip and
were unable to walk, while one patient developed
necrosis of the femoral head followed by pain, re-
duced ability to walk and reduced movement of the
hip.
Lund et al. (16) compared the Ender-nailing with
the McLaughlin osteosynthesis using the Stinch-
field hip assessment chart one year after the opera-
tion and found 70% excellent or good results in the
Ender group and 84% in the McLaughlin group. In
the present study, 69% of the patients were classi-
ced as excellent or good after only 3 months, sug-
gesting that the sliding screw-plate method seems to
fulfill the purpose of recovering an excellent or
good hip function as least as early as other devices.
In agreement with Lund et al. (16) we found that
patients with primary stable fractures had a signifi-
cantly lower number of failures.

Very little has been published about the effect of
hip fracture on social function. Like Jensen et al.
(12) we found that the social function groups, as
classified on admission to the hospital, determined
the postoperative social function groups to a great-
er extent than did the patient’s age at the time of
the fracture. Seventy-five per cent of the surviving
patients coming from home were back there 3
months after the fracture. Previous reports state
that 10-20% of patients admitted from home are
discharged to nursing homes after a hip fracture (1,
3, 8). In our series this applied to 25%. Of the
remaining 75% of the patients living in their homes
3 months after the operation, 5% were more de-
pendent on the social welfare system than before
the fracture. This figure is higher than that reported
by Jensen et al. (12), who stated that only 29% had
deteriorated socially after their return home. This
difference might be explained by the longer follow-
up period in the study by Jensen et al. (12).

As also stated in other studies, the patients com-
ing from their own homes had a better prognosis (2,
12, 16) and, in agreement with other publications,
we found that the pre-fracture social function groups
affected the mortality to a greater extent than did
age (12).

The mortality rate of patients with trochanteric
hip fractures has been reported to be about 25%
during the first year after the operation (2, 19). We
found a similar figure after 3 months, as also report-
ed by Heyse-Moore et al. (9), suggesting that
mortality is greatest during the first 3 months post-
operatively, which is in agreement with Jensen et
al. (12).

As mentioned by Janson (10) the purpose of our
treatment should be to return patients to their pre-
fracture level. The assessment systems used in this
study show that this objective was attained in 38%
seen from a social point of view, in 40% with
respect to ability to walk, and in 69% when using
the Stinchfield hip assessment system (21). These
figures are comparable with those of Cobey et al.
(5) and Katz et al. (15), who stated that 25-50% of
the patients maintained their function after a hip
fracture.

ACKNOWLEDGEMENTS
Gratitude is expressed to M.D. Anders Földhøg,
Institute of Social Medicine, University of Aarhus, for
substantial help with the multiple logistic regression
analyses.

REFERENCES
2. Ceder, L., Ekholm, L., Inest, S., Lindberg, L.,
Odberg, E. & Sjölin, C.: Rehabilitation after hip frac-
3. Clark, A. N. G. & Wainwright, D.: Management of
the fractured neck of the femur in the elderly female.
4. Clausen, D. K.: Trochanteric fractures treated by
the sliding screw plate fixation method. J Trauma 4: 716,
1964.
5. Cobey, J. C., Cobey, J. H., Const, L., Weil, U. H.,
Greenswold, W. F. & Southwick, W. O.: Indicators of
6. Daan, W. J., Burke, R. E., O'Reilly, D. E. & Rao,
A. N.: Experience with a sliding screw in intertro-
7. Friesenborg, Z. B., Grantly, E. & Rutt, C.: Fixa-
tion in intertrochanteric fractures of the hip. Surg
8. Gylling, B.: Coliffrakturen som sialsmedicinsk
9. Heyse-Moore, C. H., MacEchern, A. C. & Evans,
D. C. J.: Treatment of intertrochanteric fractures of
the femur. A comparison of the Richards screw-plate
with the Jansen nail-plate. J Bone Joint Surg 55-B:
262, 1983.
10. Jansons, E.: Vårdprogram för höftfraktur hos
åldre (ed. G. Bauer). SPRI publ No. 5, Stockholm,
1977.
11. Jensen, J. S., Tønsved, E. & Mønning, N.: Unsta-
ble trochanteric fractures treated with the sliding
screw-plate system. A biomechanical study of unstab-
el trochanteric fractures III. Acta Orthop Scand 52:
12. Jensen, J. S., Tønsved, E. & Sørensen, P. H.:
Social rehabilitation following hip fractures. Acta
13. Jensen, J. S., Tønsved, E. & Sonne-Holm, S.: Sta-
ble trochanteric fractures. A comparative analysis
of four methods of internal fixation. Acta Orthop Scand
Scott, C. P.: Long term course of 147 patients with
fracture of the hip. Surg Gynec Obstet 124:1219,
1967.
16. Lund, B., Heppe, R. & Lucht, U.: Trochanteric
and subtrochanteric fractures. One year follow-up of a
prospective study of Ender and McLaughlin osteo-
17. Mullerolland, R. C., Gunn, D. R. & Orth, M. C.:
Sliding screw plate fixation in intertrochanteric fem-
healing after internal fixation and infection. Bion-
echanics and biology. New York, Springer Verlag,
1974.
hip screw system in the treatment of intertrochanteric
20. Stinchfield, F. E., Cosperman, B. & Shau, C. E.:
Replacement of the femoral head by Inlet or Austin
21. Thomas, T. G. & Stevens, H. S.: Social effects
of fractures of the neck of the femur. Brit Med J III:
456, 1974.
22. Wolfgang, G. L., Bryant, M. H. & O'Neil, J. P.:
Treatment of intertrochanteric fractures of the femur
using sliding screw plate fixation. Clin Orthop 171:
Address for offprints:
Bjarne Næs Möller
Hørsted Kloster vej 44
DK-8230 Åbyhøj
Denmark.
more, 2 patients underwent below-knee amputation during the postoperative course, because of arterio-
sclerotic gangrene of the foot. 8 had complicating fractures of the extremities (Table I) and 14 suf-
sfered from pain due to telescoping of the screw. Two patients had severe contracture of the hip and were unable to walk, while one patient developed necrosis of the femoral head followed by pain, re-
duced ability to walk and reduced movement of the hip.

Lund et al. (16) compared the Ender nailing with the McLaughlin osteosynthesis using the Stinch-
field hip assessment chart one year after the opera-
tion and found 70% excellent or good results in the Ender group and 84% in the McLaughlin group. In the present study, 69% of the patients were classi-
ced as excellent or good after only 3 months, sug-
gest that the sliding screw-plate method seems to fulfi
the purpose of recovering an excellent or good hip function as least as early as other devices. In agreement with Lund et al. (16) we found that patients with primary stable fractures had a signifi-
antly lower number of failures.

Very little has been published about the effect of hip fracture on social function. Like Jensen et al. (12) we found that the social function groups, as classified on admission to the hospital, determined the postoperative social function groups to a great-
er extent than did the patient’s age at the time of the fracture. Seventy-five per cent of the surviving patients coming from home were back there 3 months after the fracture. Previous reports state that 10-20% of patients admitted from home are discharged to nursing homes after a hip fracture (1, 3, 8). In our series this applied to 25%. Of the remaining 75% of the patients living in their homes 3 months after the operation, 5% were more de-
pendent on the social welfare system than before the fracture. This figure is higher than that reported by Jensen et al. (12), who stated that only 29% had deteriorated socially after their return home. This difference might be explained by the longer follow-
up period in the study by Jensen et al. (12).

As also stated in other studies, the patients com-
ing from their own homes had a better prognosis (2, 12, 16) and, in agreement with other publications, we found that the pre-fracture social function groups were the mortality to a greater extent than did age (12).

The mortality rate of patients with trochanteric hip fractures has been reported to be about 25% during the first year after the operation (2, 19). We found a similar figure after 3 months, as also reported by Heyse-Moore et al. (9), suggesting that mortality is greatest during the first 3 months post-
operatively, which is in agreement with Jensen et al. (12).

As mentioned by Janssen (10) the purpose of our treatment should be to return patients to their pre-
fracture level. The assessment systems used in this study show that this objective was attained in 38% seen from a social point of view, in 40% with respect to ability to walk, and in 69% when using the Stinchfield hip assessment system (21). These figures are comparable with those of Cobey et al. (5) and Katz et al. (15), who stated that 25-50% of the patients maintained their function after a hip frac-
ture.

ACKNOWLEDGEMENTS

Gratitude is expressed to M.D. Anders Földingsand, Insti-
tute of Social Medicine, University of Århus, for inval-
sable help with the multiple logistic regression analyses.

REFERENCES

2. Ceder, L., Ekelund, L., Isenius, S., Lindberg, L., Odberg, E. & Stjönn-C.: Rehabilitation after hip frac-
6. Daum, W. J., Burde, R. E., O'Reilly, D. E. & Rao, A. N.: Experience with a sliding screw in inter-
7. Friedenberg, Z. B., Gretchen, E. & Rust, C.: Fixa-
11. Jensen, J. S., Tønsvedov, E. & Møssing, N.: Unsta-
bile trochanteric fractures treated with the sliding screw-plate system. A biomechanical study of unsta-
13. Jensen, J. S., Tønsvedov, E. & Sonne-Holm, S.: Sta-
16. Lund, B., Høgh, J. & Lucht, U.: Trochanteric and subtrochanteric fractures. One year follow-up of a prospective study of Ender and McLaughlin osteo-
17. Mulholland, R. C., Gunn, D. R. & Orth, M. C.: Sliding screw plate fixation in intertrochanteric fem-
18. Rittmann, W. W. & Perren, S. M.: Cortical bone heal-
ing after internal fixation and infection. Biome-

Address for offprints: Bjarne Nør Møller Hadal Kløvvej 44 DK-8230 Åbyhøj Denmark

Scand J Rehab Med 17

Scand J Rehab Med 17