ABSTRACT. The effects of high frequency alternating knee flexion-extension on muscle activity of the quadriceps and hamstrings muscle groups has been investigated. Standard loads were used for each subject. The muscle activity in vastus medialis, vastus lateralis, rectus femoris and the lateral hamstrings were recorded by electromyography during increasing velocities. Rectus femoris and hamstrings were found to increase their activities significantly with increasing speed while vastus medialis and vastus lateralis showed no such change. The individual thigh muscles thus differ in function in relation to the velocity of movement.

Key words: Knee, muscle contraction, exercise therapy, quadriceps, hamstrings, electromyography

When considering the control of such movements from a neurophysiological viewpoint, rapid ballistic movement appears to form part of a distinct type of voluntary movement which is more likely to be preprogrammed in the higher centres of the central nervous system and operate independently of sensory feedback (4, 11, 16). In the debate of the relevance of various types of motor control on different movements patterns, it has become obvious, when considering the modern neurological theories (15) that no consideration is given to the possibility that some muscle groups may be more involved in phasic activity under the control of higher centres while others may be more concerned with maintaining and adjusting posture. For this reason one could presume that all the individual components of the quadriceps would take part in rapid ballistic movements of the knee.

Some neurophysiologists, however, have recognized the possibility that different types of muscles may respond in different ways to a particular voluntary command. From their experiments on single motor unit recruitment, Desmedt & Coduxa (1978) concluded that the organization of motor commands during voluntary ballistic contraction was different for 'fast twitch' and 'slow twitch' muscles. Although not specifically referring to the thigh musculature, this investigation is nevertheless highly significant as motor control is considered in terms of the type of muscle involved.

Far more explicit theories on the motor control of different muscle types have been put forward in the 1960s by Rood (17, 14, 18) based on clinical observations and the neurophysiological theories of the time. These theories stressed that muscles such as rectus femoris and hamstrings were more under control of the higher centres of the nervous system and were mainly involved in brisk, non-weightbearing activities, especially those requiring a high level of skill. In contrast it was postulated that muscles such as the vasti and more particularly vastus me-
dialis, rely heavily on sensory feedback for their action especially during weight-bearing.

In considering the action of the quadriceps during rapid ballistic movement of the knee the hypothesis that rectus femoris may be specifically facilitated during such an action, especially if performed in a non-weight-bearing position, has been tested.

METHODS

This study involved the EMG monitoring of three components of quadriceps (vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF)) and of the lateral hamstrings during a specified knee extension and flexion exercise, carried out at three different speeds by normal subjects. For each of the four muscles, their activity during each of these three speeds was compared. It was possible to determine whether the amount of muscle activity changed significantly with increasing speed of movement, and whether the four muscles responded to the speed change in similar or different ways. A biomechanical analysis of the specified exercise was also conducted to indicate how muscle torque changed with knee angle and to provide a theoretical estimate of how the power produced during the exercise varied through an exercise cycle.

Twenty female subjects, aged between 30 and 35 years, were included in the study. To be included, subjects had to be in good general health with no history of lower limb pathology or injury. For convenience, all subjects were drawn from a student or staff population of the Department of Physiotherapy at the University of Queensland.

To satisfy the demand for a high speed, movement of the knee against inertia, performed in a non-weight-bearing position the movement pattern selected consisted of the following: with the subject in prone lying, knee extended to 0° from a 45° knee flexion position against a light spring resistance, and a return to knee flexion (as in Fig. 1). Prone lying was used in this position has been shown to minimize activity of other hip muscles during knee movements (9). It also enabled the hip position to be kept constant so that the function of the multifidus teres muscles (RF and hamstring) could be evaluated. Spring resistance was chosen as pilot studies indicated that during fast repeated contractions, a resistance with some recoil gives a smoother action. Springs also allowed higher speeds to be attained than was possible with a fixed free movement of the leg or against a resistance such as a pulley weight system (as used by Hellebrekers et al. (8)).

Furthermore, they have minimal inertial resistance, so that only the inertia of the lower limb (due to its mass) had to be overcome during the exercise. A spring which would just counterbalance the lower leg at 60° from the horizontal was used. Because of the forces applied during these rapid oscillating movements, the spring was attached directly to a stable bar above the subject. To confine movement to the knee joint, the pelvis and thigh were securely stabilised by straps to the supporting bench (as in Fig. 1).

Several instruments were used to monitor knee angle and muscle action and to set the speed of movement during the exercise. A metronome controlled the exercise rate and, to ensure that the exercise was performed through the specified 45° range of motion, a polarised light goniometer (PLG) was used to monitor the changing knee angles throughout. This provided a continuous illustration of knee joint angles which, after calibration, allowed measurement of its signal to be displayed in the same way. Firstly, as a form of visual feedback, a digitising oscilloscope screen was placed directly in front of the subject, so that the pattern of knee angle from the PLG could be observed during the movements. The subject was shown the limits of the oscilloscope pattern representing 0° (when the lower leg contacted the bench) and 45° knee flexion, so that with practice, he could accurately control knee movement in the required range. Secondly, the signals from the PLG were recorded on a chart recorder, for correlation with the subject's movement. The PLG was used to enable initial calibration of the PLG knee angle signal, a "myris" goniometer was attached to the lower leg.

A four channel EMG equipment was used to monitor the action potentials for the VL, RF, VM and lateral hamstrings, both raw and integrated EMG signals being recorded (ranging a chart speed of 25 mm per sec). For each subject, the skin of the left leg was prepared for application of pairs of 8 mm silver-silver chloride electrodes, using techniques described by Gillmore & Myers (6). These were placed tangentially to the skin and on the motor points of VL, RF, VM and lateral hamstrings (located by stimulation with faradic current). After attachment of the PLG and the Myris-goniometer, the subject was positioned on the exercise bench and the stabilising straps were secured over the patient's shoulders and wrists and an ankle-strap attached for application of the spring (as in Fig. 1). The subject was then asked to sustain maximum isometric contractions of knee extension and flexion with the EMG gun was adjusted so that the size of the raw signal was approximately equal on all channels. The integrated EMG output took the form of a full wave area integral with gains normally set at 500 µv per division and judged set at 30 µv per division.

The subject performed some initial warm-up leg exercises, and then asked to relax the lower leg while the highest possible spring was attached to ensure counter-balancing of the leg by the spring. For 19 subjects, a "5" spring achieved this purpose, the remaining subject requiring a "5" spring. Calibration of the spring using known weights was carried out to find the spring constant and thus allow estimations of the forces exerted during spring lengths. Counter-balancing was considered to be effective when EMG signals of monitored muscles reached minimal levels, signifying relaxation. The position of the lower leg was then adjusted to meet the standardised requirements of 60° knee angle and 90° between spring and lower leg at the ankle. The 60° knee angle in the resting position was chosen so that when the subject performed the fast repetitive knee extension between 0° and 45° knee flexion, the lower leg would not return to the position of balance with the spring. Above this point, the movement would have become very energy poor, and below the weight of the leg would no longer have been counter-balanced by the spring. These procedures ensured that despite the varying lengths and weights of subjects' lower legs, the exercise conditions were standardised for all subjects. Using the EMG signs, visual feedback, opportunity was then given to practice the specified 0° to 45° range of motion at each of the three speeds. Each of the metronome represented one complete exercise cycle and positive torque representing knee flexor action. Power was included to illustrate how it varied through the exercise cycle.
In the study, the exercise consisted of three components of quadriceps (vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF)) and of the lateral hamstrings. The subject sat on a stool, with his knees flexed to 90° and his feet flat on the floor. The subject was instructed to perform the exercise as fast as possible without losing balance.

Methods

This study involved the EMG monitoring of three components of quadriceps (vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF)) and of the lateral hamstrings during a specified knee extension and flexion exercise, carried out at three different speeds by normal subjects. For each of the four muscles, their activity during each of the three speeds was measured. It was possible to determine whether the amount of muscle activity changed significantly with increasing speed of movement, and whether the four muscles responded to the speed change in similar or different ways. A biomechanical analysis of the specified exercise was also conducted to indicate how muscle torque changed with knee angle and to provide a theoretical estimate of how the power produced during the exercise varied through an exercise cycle.

Twelve female subjects, aged between 30 and 35 years, were included in the study. To be included, subjects had to be in good general health with no history of lower limb pathology or injury. For convenience, all subjects were drawn from the student or staff population of the Department of Physiotherapy at the University of Queensland.

To satisfy the demand for a high-speed, movement of the knee against inertia, performed in a non-weight-bearing position the movement pattern selected consisted of the following: with the subject prone lying, knee extended to 90° from a 45° knee flexion position against a light spring resistance, and a return to knee flexion (as in Fig. 1). Prone lying was used in this position has been shown to minimize activity of other hip muscles during knee movements (9). It also enabled the hip position to be kept constant so that the function of the quadriceps femoris (RF and hamstring) could be isolated. Spring resistance was chosen as pilot studies indicated that during fast repeated contractions, a resistance with some recoil gives a smoother action. Springs also allowed higher speeds to be attained thereby permitting the initiation of the free movement of the leg or against a resistance such as a pulley weight system (as used by Hellekate et al. (8)). Furthermore, they have minimal inertial resistance, so that the inertial of the lower limb (due to its mass) had to be overcome during the exercise. A spring which would just counterbalance the lower leg at 60° from the horizontal was used. Because of the forces applied during these rapid oscillating movements, the spring was adjusted directly to a stable bar above the subject. To confuse movement to the knee joint, the pelvis and thigh were securely stabilised by straps to the supporting bench (as in Fig. 1).

Several instruments were used to monitor knee angle and muscle action and to set the speed of movement during the exercise. A metronome controlled the exercise rate and, to ensure that the exercise was performed through the specified range of motion, a polarised light goniometer (PLG) was used to monitor the changing knee angles throughout. This provided a continuous illustration of knee joint angles which, after calibration, allowed their measurement. Its signal was displayed on two traces. Firstly, as a form of visual feedback, a digitising oscilloscope screen was placed directly in front of the subject, so that the pattern of knee angular excursion from the PLG could be observed during the movements. The subject was shown the limits of the oscilloscope pattern representing 0° (when the lower leg contacted the bench) and 45° knee flexion, so that with practice, she could accurately control knee movement. Secondly, the signals from the PLG were recorded on a chart recorder, for correlation with other signals during analysis. To enable initial calibration of the PLG knee angle signal, a "Marvin" goniometer was attached to the lower leg. A four channel EMG instrument was used to monitor the action potentials for the VL, RF, VM and lateral hamstrings, both raw and integrated EMG signals being recorded (resulting in a chart speed of 25 mm per sec).

For each subject, the skin of the left leg was prepared for application of pairs of 8 mm silver/copper electrodes, using techniques described by Gilmore & Myers (6). These were placed tangential to the motor points of VL, RF, VM and lateral hamstrings (located by stimulation with faradic current). After attachment of the PLG and the Myrin-goniometer, the subject was positioned on the exercise bench and the stabilising straps secured over the pelvis and thighs. The ankle-strap was then applied for attachment of the spring (as in Fig. 1). The subject was then asked to sustain maximum isometric contractions of knee extension and flexion with the EMG gun was adjusted so that the size of the raw signal was approximately equal in all channels. The integrated EMG output took the form of a full wave rectified signal with zones normally set at 500 μV per division and areas set at 10 μV per division.

The subject performed six normal warm-up leg exercises, and then asked to relax the lower leg while the highest possible spring was attached to ensure counter-balancing of the leg by the spring. For 19 subjects, a 15 lb spring achieved this purpose, the remaining subject requiring a 20 lb spring. Calibration of the spring using known weights was carried out to find the spring constant and thus allow estimations of the forces exerted by varying spring lengths. Counterbalancing was considered to be effective when EMG signals of monitored muscles reached minimal levels, signifying relaxation. The position of the subject was then adjusted to meet the standardized requirements of 60° knee angle and 90° between spring and lower leg at the ankle. The 60° knee angle in the resting position was chosen so that when the subject performed the fast repetitive knee extension movements 0° and 45° knee flexion, the lower leg would not return to the position of balance with the spring. Above this point, the movement would have become very easy to perform and the weight of the leg would no longer have been counter-balanced by the spring. These procedures ensured that despite the varying lengths and weights of subjects' lower legs, the exercise conditions were standardised for all subjects. Using the visual patterns of action, feedback was optimal and then given to practice the specified 0° to 45° range of motion at each of the three speeds. Each of the metronome represented one complete exercise cycle.

Action and positive torque representing knee flexion action. Power was included to illustrate how it varied through the exercise cycle.

Analysis of results related on a comparison of EMG recordings made under varying exercise conditions. It was therefore important to establish that these were repeatable between successive attempts at any one frequency. To this end, the subject performed the exercise twice for each speed, data being recorded on the EMG once the correct joint range and exercise speed (as shown on the oscilloscope) were received by the researcher to have been attained by the subject. Data for approximately ten cycles were recorded, three of these being used for later analysis. To control for such factors as fatigue and learning effect, the three speeds were presented to subjects in random order, with one minute rest interval between trials. The EMG signals were examined for accuracy of joint range and speed during each exercise. Data were not included for analysis if total joint range varied more than 10% or if the time taken to complete three cycles at each speed varied more than 4% from the designated time. In the majority of subjects, no significant range or speed changes were noted during this period.
RESULTS

Although both raw and integrated EMG signals were recorded (as in Fig. 3) the latter (i.e. IEMG) were used as a basis for analysis. For each exercise speed and each muscle, the measures of total activity during three exercise cycles were collated and means and standard deviations for the 19 subjects calculated (as shown in Table I).

Analysis consisted of applying a three-way analysis of variance (ANOVA) to the factors affecting EMG recordings, namely the four muscles, three speeds and the two trials (i.e. two repetitions of the exercise program at each speed). From Table II it can be seen that there was no significant difference in muscle response for the two repeated trials (M×T interaction), showing that the muscle function for each specified condition was repeatable.

This analysis also revealed that certain muscles reacted differently to changes in speed, as shown by the level of significance of the M×S interaction in Table II. As the ANOVA referred to responses of all muscles collectively, further analyses, in the form of t-tests were undertaken to determine more explicitly which of the four muscles responded by increasing activity with increasing speed. For each muscle, the means and standard deviations of EMG recordings for speeds 1 and 3 were compared, as shown in Table III. It can be seen that muscle function varied between speeds but that it did so in different ways for each muscle. Fig. 4 illustrates this graphically.

In view of these results, multiple comparisons were undertaken using the Sheffe method (10). A comparison of changes in muscle activity between RF and hamstrings and between VM and VL revealed no significant differences in either case. (RF and hamstrings: F=4.996; critical value of F=8.04. VM and VL: F=1.097; critical value of F=8.04.) Further comparisons showed that the average change in muscle activity of RF and hamstrings was significantly greater than the average change in activity of VM and VL (F=21.3 with critical value of F=18.9 p<.001). In terms of magnitude of muscle activity, this experiment showed that high speed oscillating knee extension movements demand a very pronounced increase in activity of RF and hamstrings over that required for

Table I. A comparison of muscle activity at varying exercise speeds

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Speed 1</th>
<th>Speed 2</th>
<th>Speed 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectus femoris</td>
<td>23.00</td>
<td>23.00</td>
<td>20.50</td>
</tr>
<tr>
<td>Vastus lateralis</td>
<td>21.20</td>
<td>21.20</td>
<td>18.50</td>
</tr>
<tr>
<td>Hamstrings (lateral)</td>
<td>21.20</td>
<td>21.20</td>
<td>18.50</td>
</tr>
</tbody>
</table>

Table II. Results of 3 way analysis of variance

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>19</td>
<td>261 722.75</td>
<td>13 775.25</td>
<td>36.39</td>
<td><.005</td>
</tr>
<tr>
<td>(S) Muscle</td>
<td>3</td>
<td>122 560.00</td>
<td>41 220.00</td>
<td>116.08</td>
<td><.005</td>
</tr>
<tr>
<td>(T) Trials</td>
<td>1</td>
<td>72.25</td>
<td>72.25</td>
<td>20</td>
<td>NS</td>
</tr>
<tr>
<td>M × T</td>
<td>3</td>
<td>117 663.00</td>
<td>58 931.50</td>
<td>166.36</td>
<td><.005</td>
</tr>
<tr>
<td>M × S</td>
<td>6</td>
<td>77 526.00</td>
<td>12 921.00</td>
<td>36.47</td>
<td><.005</td>
</tr>
<tr>
<td>M × T × S</td>
<td>6</td>
<td>438.00</td>
<td>73.00</td>
<td>0.21</td>
<td>NS</td>
</tr>
</tbody>
</table>

Fig. 4. Changes in muscle activity (measured in microvolts/seconds) with increases in speed.
flexion-extension movements of the knee

![Image of graph showing changes in muscle activity measured in microvolts/seconds with increases in speed.]

Fig. 4. Changes in muscle activity (measured in microvolts/seconds) with increases in speed.

RESULTS

Although both raw and integrated EMG signals were recorded (as in Fig. 3) the latter (i.e. IEMG) were used as a basis for analysis. For each exercise speed and each muscle, the measures of total activity during three exercise cycles were collated and means and standard deviations for the 19 subjects calculated (as shown in Table I). Analysis consisted of applying a three way analysis of variance (ANOVA) to the factors affecting EMG recordings, namely the four muscles, three speeds and the two trials (i.e. two repetitions of the exercise program at each speed). From Table II it can be seen that there was no significant difference in muscle response for the two repeated trials (M x T interaction), showing that the muscle function for each specified condition was repeatable. This analysis also revealed that certain muscles reacted differently to changes in speed, as shown by the level of significance of the M x S interaction in Table II. As the ANOVA referred to responses of all muscles collectively, further analyses, in the form of t-tests were undertaken to determine more explicitly which of the four muscles responded by increasing activity with increasing speed. For each muscle, the means and standard deviations of EMG recordings for speeds 1 and 3 were compared, as shown in Table III. It can be seen that muscle function varied between speeds but that it did so in different ways for each muscle. Fig. 4 illustrates this graphically.

In view of these results, multiple comparisons were undertaken using the Sheffé method (10). A comparison of changes in muscle activity between RF and hamstrings and between VM and VL revealed no significant differences in either case. (RF and hamstrings: $F_{5,4996}$ critical value of $F=8.04$, VM and VL: $F=1.097$; critical value of $F=8.04$.) Further comparisons showed that the average change in muscle activity of RF and hamstrings was significantly greater than the average change in activity of VM and VL ($F=213$ with critical value of $F=18.9 p<0.01$). In terms of magnitude of muscle activity, this experiment showed that high speed oscillating knee extension movements demand a very pronounced increase in activity of RF and hamstrings over that required for

Table I. A comparison of muscle activity at varying exercise speeds

<table>
<thead>
<tr>
<th>Muscles</th>
<th>Speed 1</th>
<th>Speed 2</th>
<th>Speed 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vastus lateralis</td>
<td>26.60</td>
<td>22.90</td>
<td>29.75</td>
</tr>
<tr>
<td>Rectus femoris</td>
<td>23.00</td>
<td>49.15</td>
<td>69.90</td>
</tr>
<tr>
<td>Vastus medialis</td>
<td>35.70</td>
<td>34.85</td>
<td>42.25</td>
</tr>
<tr>
<td>Hamstrings (lateral)</td>
<td>7.15</td>
<td>18.70</td>
<td>42.20</td>
</tr>
</tbody>
</table>

Source: J Rehab Med 18

Table II. Results of 3 way analysis of variance

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>19</td>
<td>261272.75</td>
<td>13775.25</td>
<td>38.39</td>
<td><.005</td>
</tr>
<tr>
<td>(T) Trials</td>
<td>1</td>
<td>72.25</td>
<td>72.25</td>
<td>20</td>
<td>NS</td>
</tr>
<tr>
<td>(S) Speed</td>
<td>2</td>
<td>117863.00</td>
<td>58931.50</td>
<td>166.36</td>
<td><.003</td>
</tr>
<tr>
<td>M x T</td>
<td>3</td>
<td>58.00</td>
<td>19.33</td>
<td>13.05</td>
<td>NS</td>
</tr>
<tr>
<td>M x S</td>
<td>6</td>
<td>12726.00</td>
<td>2121.00</td>
<td>20.67</td>
<td><.003</td>
</tr>
<tr>
<td>M x T x S</td>
<td>6</td>
<td>438.00</td>
<td>73.00</td>
<td>0.21</td>
<td>NS</td>
</tr>
</tbody>
</table>

Source: J Rehab Med 18
slower speed movements, but that no such changes occur in VM and VL.

The timing and sequence of muscle activity throughout the range was examined also. Fig. 5 represents examples of raw EMG for RF, VM, VL, and hamstrings for two subjects at the fastest speed. Similar consistent patterns of muscle activity were found for all subjects. In 100% of cases, RF and hamstrings displayed phasic "on and off" activity (as in Figs. 5 A and 5 B). In contrast, VM showed a tonic, continuous pattern in 90% of subjects, while VL displayed this pattern in 45% and worked phasically (as in Fig. 5 A) in 55% of subjects.

DISCUSSION AND CONCLUSIONS

During the execution of this rapid oscillatory movement in prone, the pattern of rectus femoris and hamstrings was different from those of vastus medialis. The rectus femoris and hamstrings operated reciprocally at different parts of the exercise cycle to accelerate and decelerate the lower leg as expected of the primary flexors and extensors of the knee joint. Vastus medialis and lateralis generally acted tonically in a manner which would stabilize the knee joint and restrain the patella during the movement.

The most important finding was that, as the speed of the movement increased, highly significant increases in the activity of rectus femoris and hamstrings occurred in comparison to the vasti. These results are limited to the prone position and thus care needs to be taken with generalizations. The hypothesis that rectus femoris is facilitated more than the vasti in high speed, highly skilled, non-weight bearing activities was tested. Significant differences were observed in the predicted direction to the null hypothesis was rejected.

There are some important implications of this study in relation to the design of exercise in rehabilitation. High velocity, low load activity, particularly in the prone position, appears to be inappropriate exercise when quadriceps power needs to be improved. This is because muscle imbalances would occur due to the specific facilitation of rectus femoris and hamstrings with the apparent inhibition of the vasti. The technique may prove useful however if rectus femoris and hamstrings require maximal facilitation.

This study of the effect of increasing speed on muscle function has revealed that individual muscles of the knee musculature respond differently when subjected to high speed alternating exercise movements in the prone position. This finding may contribute to basic scientific knowledge on muscle function, and has clinical significance in relation to the design of quadriceps exercise programs.

ACKNOWLEDGEMENTS

The authors wish to thank the following people for assistance during this project: Professor K. J. Bullock, B.E. Ph.D. and Mrs. E. Gibson, B.E., M.Sc. for advice on biomechanical analysis; Dr. D. C. Chant, M.Sc. (Lond.) Ph.D. (ANU) for consultations regarding statistical analysis; Dr. G. Hoonan, M.B.B.S., for guidance on the neuro-physiological background; and Professor M. V. Vladimir Jand, Dr. Sc. for valuable discussions during the plating of this paper.

APPENDIX I. BIOMECHANICAL ANALYSIS

The angular displacement θ of the leg is approximately sinusoidal with a mean displacement and an amplitude of 22.5°=0.393 radians.

The circular frequency $\omega = \frac{2\pi B}{60} = 0.105B \ (1)$

where $B \approx$ beats per minute

From Fig. 1 it is obvious that the torques produced by the quadriceps M_Q by the knee flexors M_F, by the spring force F_s, and by the mass of the leg M all combine to produce a resultant torque about the knee which produces the rotation, i.e. the inertial acceleration.

The power P is the product of the torques and the angular velocity

\[P = 0.105B \cdot \frac{\pi B}{60} \begin{pmatrix} \frac{d\theta}{dt} \\ \frac{d\theta}{dt} \end{pmatrix} \]

It should be noted that the frequency of the power is twice that of the displacement θ. In addition, whilst the torque M_G-M_F oscillates at the fundamental frequency, the form is non-sinusoidal due to the spring forces and the mass moments. The computer analysis produce the variables plotted in Fig. 2. Any inaccuracies due to the assumptions of sinusoidal variation in θ are negligible compared to the difficulties in estimating the mass and inertia of the lower leg.

REFERENCES

Scand J Rehab Med 18
slower speed movements, but that no such changes occur in VM and VL.

The timing and sequence of muscle activity throughout the range was examined also. Fig. 5 represents examples of raw EMG for RF, VM, VL, and hamstrings for two subjects at the fastest speed. Similar consistent patterns of muscle activity were found for all subjects. In 100% of cases, RF and hamstrings displayed phasic "on and off" activity (as in Figs. 5A and 5B). In contrast, VM showed a tonic, continuous pattern in 90% of subjects, while VL displayed this pattern in 45% and worked phasically (as in Fig. 5A) in 55% of subjects.

DISCUSSION AND CONCLUSIONS

During the execution of this rapid oscillatory movement in prone, the pattern of rectus femoris and hamstrings was different from those of vastus medialis. The rectus femoris and hamstrings operated reciprocally at different parts of the exercise cycle to accelerate and decelerate the lower leg as expected of the primary flexors and extensors of the knee joint. Vastus medialis and lateralis generally acted tonically in a manner which would stabilize the knee joint and restrain the patella during the movement.

The most important finding was that, as the speed of the movement increased, highly significant increases in the activity of rectus femoris and hamstrings occurred in comparison to the vasti. These results are limited to the prone position and thus care needs to be taken with generalizations. The hypothesis that rectus femoris is facilitated more than the vasti in high speed, highly skilled, non-weight bearing activities was tested. Significant differences were observed in the predicted direction to the null hypothesis was rejected.

There are some important implications of this study in relation to the design of exercise in rehabilitation. High velocity, low load activity, particularly in the prone position, appears to be inappropriate exercise when quadriceps power needs to be improved. This is because muscle imbalances would occur due to the specific facilitation of rectus femoris and hamstrings with the apparent inhibition of the vasti. The technique may prove useful however if rectus femoris and hamstrings require maximal facilitation.

This study of the effect of increasing speed on muscle function has revealed that individual muscles of the knee musculature respond differently when subjected to high speed alternating exercise movements in the prone position. This finding may contribute to basic scientific knowledge on muscle function, and has clinical significance in relation to the design of quadriceps exercise programs.

ACKNOWLEDGEMENTS

The authors wish to thank the following people for assistance during this project. Professor K. J. Ballock, B.E., Ph.D. and Mrs. K. Gibson, B.E., M.Sc. for advice on biomechanical analysis; Dr. D. C. Chant, M.Sc. (Lond.) Ph.D. (ANU) for consultation regarding statistical analysis; Dr. G. Houshian, M.B.B.S. for guidance on the neuro-physiological background; and Professor M. De Vladimir, Ir. Dr. Sc. for valuable discussions during the planning of this paper.

APPENDIX I. BIOMECHANICAL ANALYSIS

The angular displacement θ of the leg is approximately sinusoidal with a mean displacement and an amplitude of $22.5^\circ\pm0.393$ radians.

The circular frequency $\omega = 2\pi B / 60 = 0.105B$ (1)

where B = no. of beats per minute

From Fig. 1 it is obvious that the torques produced by the quadriceps M$_{Q}$ by the knee flexors M$_{F}$, by the spring force F_{S} and by the mass M of the leg all combine to produce a resultant torque about the knee which produces the rotation, i.e. the inertial acceleration. $I \dddot{\theta}$, where I is the inertia of the leg about the knee joint.

Thus $\Sigma M_{e} = [M_{FQ} + F_{S} \sin \delta] - M_{C} \cos \theta$ (2)

where A = distance from knee to attachment point of spring

δ = angle of inclination between leg and spring

C = distance of centre of mass of lower leg (shank and foot) from knee = 0.606 L (Winter, 1979)

L = length of lower leg.

Now $\Sigma M_{e} = I \dddot{\theta}$ (3)

where $I = \text{Inertia of lower leg} = M_{L}^2$

$M = \text{mass of the leg} = 2F_{A}/C$, calculated at $\theta = 60^\circ$ the equilibrium point

$r = \text{radius of gyration} = 0.735 L$ (Winter, 1979)

$I = 1.9D F_{A} / C L^2$

The power P is the product of the torques and the angular velocity

$P = I \dot{\theta}$ (4)

It should be noted that the frequency of the power is twice that of the displacement θ. In addition, whilst the torque $M_{Q} - M_{F}$ oscillates at the fundamental frequency, the form is nonsinusoidal due to the spring forces and the mass moments. The computer analysis produced the variables plotted in Fig. 2. Any inaccuracies due to the assumption of sinusoidal variation in θ are negligible compared to the difficulties in estimating the mass and inertia of the lower leg.

REFERENCES

ABSTRACT. A new wheelchair ergometer is described, which compensates for the pulsating character of the work by an automatic control system. This makes it possible to maintain a constant level of power during wheelchair work. Design: An automatic control system has been integrated in an electronically braked bicycle ergometer, and a pedal unit from Robby Eskotronic bicycle ergometer RE 820 has been coupled to a modified test wheelchair. With this device, the physical working capacity during submaximal circumstances can be tested in handicapped persons.

Key words: Wheelchair ergometer, automatic control system, physical working capacity

The estimation of physical working capacity is usually done by a submaximal or maximal ergometer test. The maximal test implies collecting expired air with a mouthpiece and tube and other physiological stresses during the performance. Thus for “everyday use” (e.g., athletes for disabled) a submaximal method is preferred. The most common principle is based upon calculation of mechanical work at heart rate 170 (Watts) or changes in heart rate at given loads from one test to another. For persons who have to use a wheelchair it seems natural to test working capacity in a situation simulating the pattern of movement used in a wheelchair driving. If power output and oxygen consumption are determined in the same test, the mechanical efficiency can be calculated. This might have practical interest to the disabled when choosing different types of wheelchairs at home, at the workplace or during leisure time. Power output at each test must be known to make comparisons between different trials. The central problem is the pulsating character of wheelchair work which makes it difficult to obtain constancy during test performance.

Devices for wheelchair ergometry in the literature all seem to lack automatic control systems.

Wheelchair on rollers
1) Uncontrolled application of brakes (2), 2 braking of the rollers (3, 8), 3 braking of the axle (12).

Wheelchair on treadmill
Compensation of frictional resistance (“Power nomogram”) (10, 11, 7).

Wheelchair combined with bicycle ergometer
Mechanically braked (1, 13, 4, 5, 6, 14).

Aim
To develop a wheelchair ergometer which compensates for the pulsating character of the work by an automatic control system, making it possible to maintain a constant level of power during wheelchair work.

Earlier experiences
In order to facilitate an even application of force, bicycle and arm ergometers are often equipped with heavy flywheels, generally braked by belts so that the frictional force can be chosen by means of the belt tension. Compared to mechanical ergometers, the electromagnetic braking in its refined application lacks the great mass of the mechanical systems combined with the inertia of the moving parts of the system. The concept of an electromagnetically braked wheelchair ergometer where kinetic energy exists only in the wheels and driving rings means that inertia must be simulated electrically. In addition to regulating the influence of the pulsating character of the work, another system is needed. This system uses feedback to vary electromagnetic braking so that the operation of the ergometer is perceived as natural in spite of the fact that the wheelchair ergometer is fixed to the floor (9).

An experimental prototype built according to the