Pencil beam scanning proton therapy for mediastinal lymphomas in deep inspiration breath-hold: a retrospective assessment of plan robustness
DOI:
https://doi.org/10.2340/1651-226X.2024.23964Keywords:
Proton therapy, mediastinal lymphomas, deep inspiration breath-hold, Robust optimization, repeated verification CTsAbstract
Purpose/background: The aim of this study was to evaluate pencil beam scanning (PBS) proton therapy (PT) in deep inspiration breath-hold (DIBH) for mediastinal lymphoma patients, by retrospectively evaluating plan robustness to the clinical target volume (CTV) and organs at risk (OARs) on repeated CT images acquired throughout treatment.
Methods: Sixteen mediastinal lymphoma patients treated with PBS-PT in DIBH were included. Treatment plans (TPs) were robustly optimized on the CTV (7 mm/4.5%). Repeated verification CTs (vCT) were acquired during the treatment course, resulting in 52 images for the entire patient cohort. The CTV and OARs were transferred from the planning CT to the vCTs with deformable image registration and the TPs were recalculated on the vCTs. Target coverage and OAR doses at the vCTs were compared to the nominal plan. Deviation in lung volume was also calculated.
Results: The TPs demonstrated high robust target coverage throughout treatment with D98%,CTV deviations within 2% for 14 patients and above the desired requirement of 95% for 49/52 vCTs. However, two patients did not achieve a robust dose to CTV due to poor DIBH reproducibility, with D98%,CTV at 78 and 93% respectively, and replanning was performed for one patient. Adequate OAR sparing was achieved for all patients. Total lung volume variation was below 10% for 39/52 vCTs.
Conclusion: PBS PT in DIBH is generally a robust technique for treatment of mediastinal lymphomas. However, closely monitoring the DIBH-reproducibility during treatment is important to avoid underdosing CTV and achieve sufficient dose-sparing of the OARs.
Downloads
References
Engert A, Plütschow A, Eich HT, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363:640–52. https://doi.org/10.1056/NEJMoa1000067 DOI: https://doi.org/10.1056/NEJMoa1000067
Tseng YD, Cutter DJ, Plastaras JP, et al. Evidence-based review on the use of proton therapy in lymphoma from the Particle Therapy Cooperative Group (PTCOG) lymphoma subcommittee. Int J Radiat Oncol Biol Phys. 2017;99(4):825–42. https://doi.org/10.1016/j.ijrobp.2017.05.004 DOI: https://doi.org/10.1016/j.ijrobp.2017.05.004
Maraldo MV, Brodin NP, Aznar MC, et al. Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma. Ann Oncol. 2013;24(8):2113–8. https://doi.org/10.1093/annonc/mdt156 DOI: https://doi.org/10.1093/annonc/mdt156
Molin D. Clinical investigation of PBS proton treatment in Hodgkin lymphoma patients, "PRO-Hodgkin", [Internet] accessed 10 July 2023, Available from: www.Cancercentrum.se
Edvardsson A, Kügele M, Alkner S, et al. Comparative treatment planning study for mediastinal Hodgkin’s lymphoma: impact on normal tissue dose using deep inspiration breath hold proton and photon therapy. Acta Oncol. 2019;58(1):95–104. https://doi.org/10.1080/0284186X.2018.1512153 DOI: https://doi.org/10.1080/0284186X.2018.1512153
Illidge T, Specht L, Yahalom J, et al. International Lymphoma Radiation Oncology Group. Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys. 2012;89(1):49–58. https://doi.org/10.1016/j.ijrobp.2014.01.006 DOI: https://doi.org/10.1016/j.ijrobp.2014.01.006
Dabaja BS, Hoppe BS, Plastaras JP, et al. Proton therapy for adults with mediastinal lymphomas: the International Lymphoma Radiation Oncology Group guidelines. Blood. 2018;132(16):1635–46. https://doi.org/10.1182/blood-2018-03-837633 DOI: https://doi.org/10.1182/blood-2018-03-837633
Dionisi F, Scartoni D, Rombi B, et al. Consolidative active scanning proton therapy for mediastinal lymphoma: selection criteria, treatment implementation and clinical feasibility. Strahlenther Onkol. 2022;198(6):558–65. https://doi.org/10.1007/s00066-022-01918-1 DOI: https://doi.org/10.1007/s00066-022-01918-1
Baues C, Marnitz S, Engert A, et al. Proton versus photon deep inspiration breath hold technique in patients with Hodgkin lymphoma and mediastinal radiation: a planning comparison of deep inspiration breah hold intensity modulation radiotherapy and intensity modulated proton therapy. Radiat Oncol. 2018;3;13(1):122. https://doi.org/10.1186/s13014-018-1066-2 DOI: https://doi.org/10.1186/s13014-018-1066-2
Chang JY, Zhang X, Knopf A, et al. Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee. Int J Radiat Oncol Biol Phys. 2017;99(1):41–50. https://doi.org/10.1016/j.ijrobp.2017.05.014 DOI: https://doi.org/10.1016/j.ijrobp.2017.05.014
König L, Bougatf N, Hörner-Rieber J, et al. Consolidative mediastinal irradiation of malignant lymphoma using active scanning proton beams: clinical outcome and dosimetric comparison. Strahlenther Onkol. 2019;195(7):677–87. https://doi.org/10.1007/s00066-019-01460-7 DOI: https://doi.org/10.1007/s00066-019-01460-7
Mohan R, Grosshans D. Proton therapy – present and future. Adv drug Deliver Rev. 2017;109:26–44. https://doi.org/10.1016/j.addr.2016.11.006 DOI: https://doi.org/10.1016/j.addr.2016.11.006
Unkelbach J, Alber M, Bangert M, et al. Robust radiotherapy planning. Phys Med Biol. 2018;63(22):22TR02. https://doi.org/10.1088/1361-6560/aae659 DOI: https://doi.org/10.1088/1361-6560/aae659
Wei L, Xiaodong Z, Li Y, Mohan R. Robust optimization of intensity modulated proton therapy. Med Phys. 2012;9(2):1079–91. https://doi.org/10.1118/1.3679340 DOI: https://doi.org/10.1118/1.3679340
Andersson KM, Edvardsson A, Hall A, Kristensen I. Pencil beam scanning proton therapy of Hodgkin’s lymphoma in deep inspiration breath-hold: a case series report. Tech Innov Patient Support Radiat Oncol. 2019;13:6–10. https://doi.org/10.1016/j.tipsro.2019.11.006 DOI: https://doi.org/10.1016/j.tipsro.2019.11.006
Patel CG, Peterson J, Aznar M, et al. Systematic review for deep inspiration breath hold in proton therapy for mediastinal lymphoma: a PTCOG Lymphoma Subcommittee report and recommendations. Radiother Oncol. 2022;177:21–32. https://doi.org/10.1016/j.radonc.2022.10.003 DOI: https://doi.org/10.1016/j.radonc.2022.10.003
Karlsson M, Björk-Eriksson T, Mattsson O, et al. Distributed proton radiation therapy – a new concept for advanced competence support. Acta Oncol. 2006;45:1094–101. https://doi.org/10.1080/02841860600897876 DOI: https://doi.org/10.1080/02841860600897876
Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53:407–21. https://doi.org/10.1016/S0360-3016(02)02754-2 DOI: https://doi.org/10.1016/S0360-3016(02)02754-2
ICRU. Prescribing, recording, and reporting proton-beam therapy. Bethesda, MD: ICRU; 2007. Report No. 78.
Rana S, Jebaseelan SJE. Measurements of in-air spot size of pencil proton beam for various air gaps in conjunction with a range shifter on a ProteusPLUS PBS dedicated machine and comparison to the proton dose calculation algorithms. Australas Phys Eng Sci Med. 2019;42(3):853–62. https://doi.org/10.1007/s13246-019-00772-3 DOI: https://doi.org/10.1007/s13246-019-00772-3
Zeng C, Plastaras JP, Tochner ZA, et al. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning. Phys Med Biol. 2015;60:3013–29. https://doi.org/10.1088/0031-9155/60/7/3013 DOI: https://doi.org/10.1088/0031-9155/60/7/3013
Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012;57(11):R99. https://doi.org/10.1088/0031-9155/57/11/R99 DOI: https://doi.org/10.1088/0031-9155/57/11/R99
Heng L, Dong L, Chrisopth B, et al. AAPM Task Group Report 290: respiratory motion management for particle therapy. Med Phys. 2022;49(4):e50–81. https://doi.org/10.1002/mp.15470 DOI: https://doi.org/10.1002/mp.15470
Ntentas G, Dedeckova K, Andrlik M, et al. Clinical intensity modulated proton therapy for Hodgkin lymphoma: which patients benefit the most? Pract Radiat Oncol. 2019;9(3):179–87. https://doi.org/10.1016/j.prro.2019.01.006 DOI: https://doi.org/10.1016/j.prro.2019.01.006
Righetto R, Fracchiolla F, Widesott L, et al. Technical challenges in the treatment of mediastinal lymphomas by proton pencil beam scanning and deep inspiration breath-hold. Radiother Oncol. 2022;169:43–50. https://doi.org/10.1016/j.radonc.2022.02.015 DOI: https://doi.org/10.1016/j.radonc.2022.02.015
Hoppe BS, Hill-Kayser CE, Tseng YD, et al. Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol. 2017;28(9):2179–84. https://doi.org/10.1093/annonc/mdx287 DOI: https://doi.org/10.1093/annonc/mdx287
Tseng YD, Hoppe BS, Dedeckova K, et al. Risk of pneumonitis and outcomes after mediastinal proton therapy for relapsed/refractory lymphoma: a PTCOG and PCG collaboration. Int J Radiat Oncol Biol Phys. 2020;109(1):220–30. https://doi.org/10.1016/j.ijrobp.2020.08.055 DOI: https://doi.org/10.1016/j.ijrobp.2020.08.055
Bert C, Durante M. Motion in radiotherapy: particle therapy. Phys Med Biol. 2011;56(16):R113–44. DOI: https://doi.org/10.1088/0031-9155/56/16/R01
Meijers A, Knopf AC, Crijns APG, et al. Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation. Radiother Oncol. 2020;150:268–274. https://doi.org/10.1016/j.radonc.2020.07.055 DOI: https://doi.org/10.1016/j.radonc.2020.07.055
Zeng C, Plastaras JP, James P, et al. Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol. 2016;55(9–10):1132–8. https://doi.org/10.1080/0284186X.2016.1191665 DOI: https://doi.org/10.1080/0284186X.2016.1191665
Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys. 2016;94(3):478–92. https://doi.org/10.1016/j.ijrobp.2015.11.049 DOI: https://doi.org/10.1016/j.ijrobp.2015.11.049
Aznar M, Ntentas G, Enmark M, et al. The role of motion management and position verification in lymphoma radiotherapy. Br J Radiol. 2021;94(1127):20210618. https://doi.org/10.1259/bjr.20210618 DOI: https://doi.org/10.1259/bjr.20210618
INTERNATIONAL ATOMIC ENERGY AGENCY, Relative Biological Effectiveness in Ion Beam Therapy, Technical Reports Series No. 461, IAEA, Vienna (2008)
Paganetti H, Blakelt E, Carabe-Fernandez A, et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46(3):e53–78. https://doi.org/10.1002/mp.13390 DOI: https://doi.org/10.1002/mp.13390
Rechner LA, Maraldo MV, Smith EA, et al. Proton linear energy transfer and variable relative biological effectiveness for adolescent patients with Hodgkin lymphoma. BJR Open. 2023;5(1):20230012. https://doi.org/10.1259/bjro.20230012 DOI: https://doi.org/10.1259/bjro.20230012
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Filip Hörberger, Karin M. Andersson, Marika Enmark, Ingrid Kristensen, Anna Flejmer, Anneli Edvardsson
This work is licensed under a Creative Commons Attribution 4.0 International License.