The impact of baseline health factors on second primary cancer risk after radiotherapy for prostate cancer

Authors

  • Marie-Christina Jahreiß Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
  • Luca Incrocci Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
  • Katja K.H. Aben Department of Research, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands; Deaprtment for Health Evidence, Radboudumc, Nijmegen, The Netherlands
  • Kim C. de Vries Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
  • Mischa Hoogeman Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
  • Maartje J. Hooning Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
  • Wilma D. Heemsberge Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands

DOI:

https://doi.org/10.2340/1651-226X.2024.24334

Keywords:

comorbidities, smoking, second primary cancer, prostate cancer, radiotherapy

Abstract

Purpose: In evaluating second primary cancers (SPCs) following External Beam Radiotherapy (EBRT), the role of lifestyle factors is frequently not considered due to data limitations. We investigated the association between smoking, comorbidities, and SPC risks within EBRT-treated patients for localized prostate cancer (PCa).

Patients & Methods: The study included 1,883 PCa survivors aged 50–79, treated between 2006 and 2013, with intensity-modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT). Clinical data were combined with SPC and survival data from the Netherlands Cancer Registry with a 12-month latency period. Standardized Incidence Ratios (SIRs) were calculated comparing the EBRT cohort with the general Dutch population. To explore the effect of patient and treatment characteristics on SPCs we conducted a Cox regression analysis. Lastly, we estimated cumulative incidences of developing solid SPC, pelvis SPC, and non-pelvis SPC using a competing risk analysis.

Results: Significantly increased SIRs were observed for all SPC (SIR = 1.21, 95% confidence interval [CI]: 1.08–1.34), pelvis SPC (SIR = 1.46, 95% CI: 1.18–1.78), and non-pelvis SPC (SIR = 1.18, 95% CI [1.04–1.34]). Smoking status was significantly associated with pelvic and non-pelvic SPCs. Charlson comorbidity index (CCI) ≥ 1 (Hazard Ratio [HR] = 1.45, 95% CI: 1.10–1.91), cardiovascular disease (HR = 1.41, 95% CI: 1.05–1.88), and chronic obstructive pulmonary disease (COPD) (HR = 1.91, 95% CI: 1.30–2.79) were significantly associated with non-pelvis SPC. The proportion of active smoking numbers in the cohort was similar to the general population.

Interpretation: We conclude that the presence of comorbidities in the EBRT population might be a relevant factor in observed excess non-pelvis SPC risk, but not for excess pelvis SPC risk.

Downloads

Download data is not yet available.

References

Koubková L, Hrstka R, Dobes P, Vojtesek B, Vyzula R. Second primary cancers – causes, incidence and the future. Klin Onkol. 2014;27(1):11–17. DOI: https://doi.org/10.14735/amko201411

https://doi.org/10.14735/amko201411 DOI: https://doi.org/10.14735/amko201411

DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA: Cancer J. 2014;64(4):252–271. DOI: https://doi.org/10.3322/caac.21235

https://doi.org/10.3322/caac.21235 DOI: https://doi.org/10.3322/caac.21235

Chun SJ, Kim JH, Ku JH, Kwak C, Lee ES, Kim S. Comparison of radical prostatectomy and external beam radiotherapy in high-risk prostate cancer. Radiat Oncol J. 2021;39(3):231–238. DOI: https://doi.org/10.3857/roj.2021.00486

https://doi.org/10.3857/roj.2021.00486 DOI: https://doi.org/10.3857/roj.2021.00486

Evers J, Kerkmeijer LGW, van den Bergh RCN, van der Sangen MJC, Hulshof MCCM, Bloemers MCWM, et al. Trends and variation in the use of radiotherapy in non-metastatic prostate cancer: A 12-year nationwide overview from the Netherlands. Radiother Oncol. 2022;177:134–142. DOI: https://doi.org/10.1016/j.radonc.2022.10.028

https://doi.org/10.1016/j.radonc.2022.10.028 DOI: https://doi.org/10.1016/j.radonc.2022.10.028

Barocas DA, Alvarez J, Resnick MJ, Koyama T, Hoffman KE, Tyson MD, et al. Association between radiation therapy, surgery, or observa-tion for localized prostate cancer and patient-reported outcomes after 3 years. JAMA. 2017;317(11):1126–1140. DOI: https://doi.org/10.1001/jama.2017.1704

https://doi.org/10.1001/jama.2017.1704 DOI: https://doi.org/10.1001/jama.2017.1704

Jahreiß M-C, Heemsbergen WD, Santvoort Bv, Hoogeman M, Dirkx M, Pos FJ, et al. Impact of advanced radiotherapy on second primary cancer risk in prostate cancer survivors: a nationwide cohort study. Front Oncol. 2021;11:771956. DOI: https://doi.org/10.3389/fonc.2021.771956

https://doi.org/10.3389/fonc.2021.771956 DOI: https://doi.org/10.3389/fonc.2021.771956

Brenner DJ, Curtis RE, Hall EJ, Ron E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. CA Cancer J Clin. 2000;88(2):398–406. DOI: https://doi.org/10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V

https://doi.org/10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V DOI: https://doi.org/10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V

Murray L, Henry A, Hoskin P, Siebert F-A, Venselaar J, ESTRO PgotG. Second primary cancers after radiation for prostate cancer: a system-atic review of the clinical data and impact of treatment technique. Radiother Oncol. 2014;110(2):213–228. DOI: https://doi.org/10.1016/j.radonc.2013.12.012

https://doi.org/10.1016/j.radonc.2013.12.012 DOI: https://doi.org/10.1016/j.radonc.2013.12.012

Bhojani N, Capitanio U, Suardi N, Jeldres C, Isbarn H, Shariat SF, et al. The rate of secondary malignancies after radical prostatectomy versus external beam radiation therapy for localized prostate cancer: a population-based study on 17,845 patients. Int J Radiat On-col Biol Phys. 2010;76(2):342–348. DOI: https://doi.org/10.1016/j.ijrobp.2009.02.011

https://doi.org/10.1016/j.ijrobp.2009.02.011 DOI: https://doi.org/10.1016/j.ijrobp.2009.02.011

Aksnessæther BY, Lund J-Å, Myklebust TÅ, Klepp OH, Skovlund E, Roth Hoff S, et al. Second cancers in radically treated Norwegian pros-tate cancer patients. Acta Oncol. 2019;58(6):838–844. DOI: https://doi.org/10.1080/0284186X.2019.1581377

https://doi.org/10.1080/0284186X.2019.1581377 DOI: https://doi.org/10.1080/0284186X.2019.1581377

Hubenak JR, Zhang Q, Branch CD, Kronowitz SJ. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg. 2014;133(1):49e–56e. DOI: https://doi.org/10.1097/01.prs.0000440818.23647.0b

https://doi.org/10.1097/01.prs.0000440818.23647.0b DOI: https://doi.org/10.1097/01.prs.0000440818.23647.0b

Wallis CJD, Mahar AL, Choo R, Herschorn S, Kodama RT, Shah PS, et al. Second malignancies after radiotherapy for prostate cancer: sys-tematic review and meta-analysis. BMJ. 2016;352:i851. DOI: https://doi.org/10.1136/bmj.i851

https://doi.org/10.1136/bmj.i851 DOI: https://doi.org/10.1136/bmj.i851

Hegemann N-S, Schlesinger-Raab A, Ganswindt U, Hörl C, Combs SE, Hölzel D, et al. Risk of second cancer following radiotherapy for pros-tate cancer: a population-based analysis. Radiat. Oncol. 2017;12(1):1–8. DOI: https://doi.org/10.1186/s13014-016-0738-z

https://doi.org/10.1186/s13014-016-0738-z DOI: https://doi.org/10.1186/s13014-016-0738-z

de Boer HC, Heijmen BJ. eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys. 2007;67(5):1586–1595. DOI: https://doi.org/10.1016/j.ijrobp.2006.11.050

https://doi.org/10.1016/j.ijrobp.2006.11.050 DOI: https://doi.org/10.1016/j.ijrobp.2006.11.050

Alison P. For causal analysis of competing risks, don’t use Fine & Gray’s subdistribution method. 2018.

Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. JASA. 1999;94(446):496–509. DOI: https://doi.org/10.1080/01621459.1999.10474144

https://doi.org/10.1080/01621459.1999.10474144 DOI: https://doi.org/10.1080/01621459.1999.10474144

Bommeé J, Walters BH, Willemsen M. Smoking in the Netherlands: key statistics for 2021. Utrecht: Trimbos-Instituut; 2022.

Boerdam A, Bevolkingstrends KK. Astma en COPD in beeld. Den Haag: Centraal Bureau voor de Statistiek; 2016.

Nielen M, Poos R, Korevaar J. Diabetes mellitus in Nederland. Prevalentie en incidentie: heden, verleden en toekomst. Nivel. 2020. https://nivel.nl/nl/publicatie/diabetes-mellitus-nederland-prevalentie-en-incidentie-heden-verleden-en-toekomst

Jahreiß M-C, Aben KKH, Hoogeman MS, Dirkx MLP, de Vries KC, Incrocci L, et al. The risk of second primary cancers in prostate cancer survivors treated in the modern radiotherapy era. Front Oncol. 2020;10:2519. DOI: https://doi.org/10.3389/fonc.2020.605119

https://doi.org/10.3389/fonc.2020.605119 DOI: https://doi.org/10.3389/fonc.2020.605119

Krasnow RE, Rodríguez D, Nagle RT, Mossanen M, Kibel AS, Chang SL, editors. The impact of age at the time of radiotherapy for localized prostate cancer on the development of second primary malignancies. Urol Oncol. 2018;36(11):500.e11. DOI: https://doi.org/10.1016/j.urolonc.2018.06.007

https://doi.org/10.1016/j.urolonc.2018.06.007 DOI: https://doi.org/10.1016/j.urolonc.2018.06.007

Lenis AT, Lec PM, Chamie K. Bladder cancer: a review. JAMA. 2020;324(19):1980–1991. DOI: https://doi.org/10.1001/jama.2020.17598

https://doi.org/10.1001/jama.2020.17598 DOI: https://doi.org/10.1001/jama.2020.17598

Boorjian S, Cowan JE, Konety BR, DuChane J, Tewari A, Carroll PR, et al. Bladder cancer incidence and risk factors in men with prostate cancer: results from Cancer of the Prostate Strategic Urologic Research Endeavor. Urol J. 2007;177(3):883–888. DOI: https://doi.org/10.1016/j.juro.2006.10.071

https://doi.org/10.1016/j.juro.2006.10.071 DOI: https://doi.org/10.1016/j.juro.2006.10.071

Warren GW, Romano MA, Kudrimoti MR, Randall ME, McGarry RC, Singh AK, et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int J Cancer. 2012;131(11):2519–2527. DOI: https://doi.org/10.1002/ijc.27556

https://doi.org/10.1002/ijc.27556 DOI: https://doi.org/10.1002/ijc.27556

Ng R, Sutradhar R, Yao Z, Wodchis WP, Rosella LC. Smoking, drinking, diet and physical activity-modifiable lifestyle risk factors and their associations with age to first chronic disease. Int J Epidemiol. 2020;49(1):113–130. DOI: https://doi.org/10.1093/ije/dyz078

https://doi.org/10.1093/ije/dyz078 DOI: https://doi.org/10.1093/ije/dyz078

Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int J Environ Res Public Health. 2009;6(1):209–224. DOI: https://doi.org/10.3390/ijerph6010209

https://doi.org/10.3390/ijerph6010209 DOI: https://doi.org/10.3390/ijerph6010209

Gallucci G, Tartarone A, Lerose R, Lalinga AV, Capobianco AM. Cardiovascular risk of smoking and benefits of smoking cessation. J Thorac Dis. 2020;12(7):3866–3876. DOI: https://doi.org/10.21037/jtd.2020.02.47

https://doi.org/10.21037/jtd.2020.02.47 DOI: https://doi.org/10.21037/jtd.2020.02.47

Published

2024-06-30

How to Cite

Jahreiß, M.-C., Incrocci, L., Aben, K. K., de Vries, K. C., Hoogeman, M., Hooning, M. J., & Heemsberge, W. D. (2024). The impact of baseline health factors on second primary cancer risk after radiotherapy for prostate cancer. Acta Oncologica, 63(1), 511–517. https://doi.org/10.2340/1651-226X.2024.24334

Issue

Section

Original article

Categories

Funding data