Neurotrophic tyrosine receptor kinase gene fusions in adult and pediatric patients with solid tumors: a clinicogenomic biobank and record linkage study of expression frequency and patient characteristics from Finland
DOI:
https://doi.org/10.2340/1651-226X.2024.26452Keywords:
Clinicogenomic, NTRK gene fusions, solid tumors, pediatrics, epidemiology, biobank, FinlandAbstract
Background: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers. Using the Auria Biobank in Finland, we aimed to identify and characterize patients with these gene fusions, and describe their clinical and tumor characteristics, treatments received, and outcomes.
Material and methods: We evaluated pediatrics with any solid tumor type and adults with colorectal cancer (CRC), non-small cell lung cancer (NSCLC), sarcoma, or salivary gland cancer. We determined tropomyosin receptor kinase (TRK) protein expression by pan-TRK immunohistochemistry (IHC) staining of tumor samples from the Auria Biobank, scored by a certified pathologist. NTRK gene fusion was confirmed by next generation sequencing (NGS). All 2,059 patients were followed-up starting 1 year before their cancer diagnosis.
Results: Frequency of NTRK gene fusion tumors was 3.1% (4/127) in pediatrics, 0.7% (8/1,151) for CRC, 0.3% (1/288) for NSCLC, 0.9% (1/114) for salivary gland cancer, and 0% (0/379) for sarcoma. Among pediatrics there was one case each of fibrosarcoma (TPM3::NTRK1), Ewing’s sarcoma (LPPR1::NTRK2), primitive neuroectodermal tumor (DAB2IP::NTRK2), and papillary thyroid carcinoma (RAD51B::NTRK3). Among CRC patients, six harbored tumors with NTRK1 fusions (three fused with TPM3), one harbored a NTRK3::GABRG1 fusion, and the other a NTRK2::FXN/LPPR1 fusion. Microsatellite instability was higher in CRC patients with NTRK gene fusion tumors versus wild-type tumors (50.0% vs. 4.4%). Other detected fusions were SGCZ::NTRK3 (NSCLC) and ETV6::NTRK3 (salivary gland cancer). Four patients (three CRC, one NSCLC) received chemotherapy; one patient (with CRC) received radiotherapy.
Conclusion: NTRK gene fusions are rare in adult CRC, NSCLC, salivary tumors, sarcoma, and pediatric solid tumors.
Downloads
References
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018 Dec;15(12):731–47. https://doi.org/10.1038/s41571-018-0113-0 DOI: https://doi.org/10.1038/s41571-018-0113-0
Westphalen CB, Krebs MG, Le Tourneau C, et al. Genomic context of NTRK1/2/3 fusion-positive tumours from a large real-world population. NPJ Precis Oncol. 2021 Jul 20;5(1):69. https://doi.org/10.1038/s41698-021-00206-y DOI: https://doi.org/10.1038/s41698-021-00206-y
O’Haire S, Franchini F, Kang Y-J, et al. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci Rep. 2023;13(1):4116. https://doi.org/10.1038/s41598-023-31055-3 DOI: https://doi.org/10.1038/s41598-023-31055-3
Zhang W, Schmitz AA, Kallionpää RE, et al. Neurotrophic-tyrosine receptor kinase gene fusion in papillary thyroid cancer: a clinicogenomic biobank and record linkage study from Finland. Oncotarget. 2024 Feb 5;15:106–16. https://doi.org/10.18632/oncotarget.28555 DOI: https://doi.org/10.18632/oncotarget.28555
Solomon JP, Linkov I, Rosado A, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Modern Pathol. 2020;33(1):38–46. https://doi.org/10.1038/s41379-019-0324-7 DOI: https://doi.org/10.1038/s41379-019-0324-7
Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today [Internet]. Lyon: International Agency for Research on Cancer. [cited 24-04-2024]. Available from: https://gco.iarc.fr/today
Yoshino T, Pentheroudakis G, Mishima S, et al. JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann Oncol. 2020 Jul;31(7):861–72. https://doi.org/10.1016/j.annonc.2020.03.299 DOI: https://doi.org/10.1016/j.annonc.2020.03.299
Hechtman JF, Benayed R, Hyman DM, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017 Nov;41(11):1547–51. https://doi.org/10.1097/PAS.0000000000000911 DOI: https://doi.org/10.1097/PAS.0000000000000911
Roche Diagnostics. VENTANA pan-TRK (EPR17341 Assay) [Internet]. [cited 24-04-2024]. Available from: https://diagnostics.roche.com/global/en/products/lab/pan-trk-epr17341-assay-ventana-rtd001230.html
Wong D, Yip S, Sorensen PH. Methods for identifying patients with tropomyosin receptor kinase (TRK) fusion cancer. Pathol Oncol Res. 2020;26(3):1385–99. https://doi.org/10.1007/s12253-019-00685-2 DOI: https://doi.org/10.1007/s12253-019-00685-2
Heydt C, Ruesseler V, Pappesch R, et al. Comparison of in situ and extraction-based methods for the detection of ROS1 rearrangements in solid tumors. J Mol Diagn. 2019;21(6):971–84. https://doi.org/10.1016/j.jmoldx.2019.06.006 [cited 24-04-2024]. Available from: https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/trusight-tumor-170-data-sheet-1170-2016-017.pdf DOI: https://doi.org/10.1016/j.jmoldx.2019.06.006
Boyle TA, Mondal AK, Saeed-Vafa D, et al. Guideline-adherent clinical validation of a comprehensive 170-gene DNA/RNA panel for determination of small variants, copy number variations, splice variants, and fusions on a next-generation sequencing platform in the CLIA setting. Front Genet. 2021;12:503830. https://doi.org/10.3389/fgene.2021.503830 DOI: https://doi.org/10.3389/fgene.2021.503830
Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care. 2005;43(11):1130–9. https://doi.org/10.1097/01.mlr.0000182534.19832.83 DOI: https://doi.org/10.1097/01.mlr.0000182534.19832.83
Vizcaya D, Farahmand B, Walter AO, et al. Prognosis of patients with malignant mesothelioma by expression of programmed cell death 1 ligand 1 and mesothelin in a contemporary cohort in Finland. Cancer Treat Res Commun. 2020;25:100260. https://doi.org/10.1016/j.ctarc.2020.100260 DOI: https://doi.org/10.1016/j.ctarc.2020.100260
Khan M, Khaznadar SS, Routila J, et al. Hepatocyte growth factor receptor overexpression predicts reduced survival but its targeting is not effective in unselected HNSCC patients. Head Neck. 2020 Apr;42(4):625–35. https://doi.org/10.1002/hed.26049 DOI: https://doi.org/10.1002/hed.26049
Gatalica Z, Xiu J, Swensen J, et al. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147–53. https://doi.org/10.1038/s41379-018-0118-3 DOI: https://doi.org/10.1038/s41379-018-0118-3
Bridgewater J, Jiao X, Parimi M, et al. Prognosis and oncogenomic profiling of patients with tropomyosin receptor kinase fusion cancer in the 100,000 genomes project. Cancer Treat Res Commun. 2022;33:100623. https://doi.org/10.1016/j.ctarc.2022.100623 DOI: https://doi.org/10.1016/j.ctarc.2022.100623
Okamura R, Boichard A, Kato S, et al. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol. 2018;2018:PO.18.00183. https://doi.org/10.1200/PO.18.00183 DOI: https://doi.org/10.1200/PO.18.00183
Marchetti A, Ferro B, Pasciuto MP, et al. NTRK gene fusions in solid tumors: agnostic relevance, prevalence and diagnostic strategies. Pathologica. 2022 Jun;114(3):199–216. https://doi.org/10.32074/1591-951X-787 DOI: https://doi.org/10.32074/1591-951X-787
Zhao X, Kotch C, Fox E, et al. NTRK fusions identified in pediatric tumors: the frequency, fusion partners, and clinical outcome. JCO Precis Oncol. 2021;1:PO.20.00250.
Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J Natl Cancer Inst. 2017 Dec 1;109(12). doi: 10.1093/jnci/djx089. PMID: 29370427. https://doi.org/10.1093/jnci/djx089 DOI: https://doi.org/10.1093/jnci/djx089
Cocco E, Benhamida J, Middha S, et al. Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res. 2019 Mar 15;79(6):1047–53. https://doi.org/10.1158/0008-5472.CAN-18-3126 DOI: https://doi.org/10.1158/0008-5472.CAN-18-3126
Wang H, Li ZW, Ou Q, et al. NTRK fusion positive colorectal cancer is a unique subset of CRC with high TMB and microsatellite instability. Cancer Med. 2022 Jul;11(13):2541–9. https://doi.org/10.1002/cam4.4561 DOI: https://doi.org/10.1002/cam4.4561
Chou A, Fraser T, Ahadi M, et al. NTRK gene rearrangements are highly enriched in MLH1/PMS2 deficient, BRAF wild-type colorectal carcinomas-a study of 4569 cases. Mod Pathol. 2020 May;33(5):924–32. https://doi.org/10.1038/s41379-019-0417-3 DOI: https://doi.org/10.1038/s41379-019-0417-3
Wu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50. https://doi.org/10.1038/ng.2938 DOI: https://doi.org/10.1038/ng.2938
Wu S, Liu Y, Shi X, et al. Elaboration of NTRK-rearranged colorectal cancer: integration of immunoreactivity pattern, cytogenetic identity, and rearrangement variant. Digest Liver Dis. 2023;55(12):1757–64. https://doi.org/10.1016/j.dld.2023.04.019 DOI: https://doi.org/10.1016/j.dld.2023.04.019
Bang H, Lee MS, Sung M, et al. NTRK fusions in 1113 solid tumors in a single institution. Diagnostics (Basel). 2022 Jun 13;12(6):1450. https://doi.org/10.3390/diagnostics12061450 DOI: https://doi.org/10.3390/diagnostics12061450
Yamashiro Y, Kurihara T, Hayashi T, et al. NTRK fusion in Japanese colorectal adenocarcinomas. Sci Rep. 2021 Mar 11;11(1):5635. https://doi.org/10.1038/s41598-021-85075-y DOI: https://doi.org/10.1038/s41598-021-85075-y
Lasota J, Chłopek M, Lamoureux J, et al. Colonic adenocarcinomas harboring NTRK fusion genes: a clinicopathologic and molecular genetic study of 16 cases and review of the literature. Am J Surg Pathol. 2020 Feb;44(2):162–73. https://doi.org/10.1097/PAS.0000000000001377 DOI: https://doi.org/10.1097/PAS.0000000000001377
Silvertown JD, Lisle C, Semenuk L, et al. Prevalence of NTRK fusions in Canadian solid tumour cancer patients. Mol Diagn Ther. 2023 Jan;27(1):87–103. https://doi.org/10.1007/s40291-022-00617-y DOI: https://doi.org/10.1007/s40291-022-00617-y
ARCHER Quiver Fusion Database [Internet]. [cited 24-04-2024]. Available from: http://quiver.archerdx.com
Yokota T, Yukino H, Doi M, et al. Real-world experience of tropomyosin receptor kinase inhibition with entrectinib in ETV6-NTRK3 positive metastatic salivary secretory carcinoma: a case series. Head Neck. 2023 May;45(5):E10–15. https://doi.org/10.1002/hed.27346 DOI: https://doi.org/10.1002/hed.27346
Florou V, Nevala-Plagemann C, Whisenant J, et al. Clinical activity of selitrectinib in a patient with mammary analogue secretory carcinoma of the parotid gland with secondary resistance to entrectinib. J Natl Compr Canc Netw. 2021 May;19(5):478–82. https://doi.org/10.6004/jnccn.2021.7022 DOI: https://doi.org/10.6004/jnccn.2021.7022
Rudzinski ER, Hechtman J, Roy-Chowdhuri S, et al. Diagnostic testing approaches for the identification of patients with TRK fusion cancer prior to enrollment in clinical trials investigating larotrectinib. Cancer Genet. 2022;260–261:46–52. https://doi.org/10.1016/j.cancergen.2021.11.006 DOI: https://doi.org/10.1016/j.cancergen.2021.11.006
Wagner F, Greim R, Krebs K, et al. Characterization of an ETV6-NTRK3 rearrangement with unusual, but highly significant FISH signal pattern in a secretory carcinoma of the salivary gland: a case report. Diagn Pathol. 2021 Aug 9;16(1):73. https://doi.org/10.1186/s13000-021-01133-z DOI: https://doi.org/10.1186/s13000-021-01133-z
Overbeck TR, Reiffert A, Schmitz K, et al. NTRK gene fusions in non-small-cell lung cancer: real-world screening data of 1068 unselected patients. Cancers (Basel). 2023 May 29;15(11):2966. https://doi.org/10.3390/cancers15112966 DOI: https://doi.org/10.3390/cancers15112966
Farago AF, Taylor MS, Doebele RC, et al. Clinicopathologic features of non–small-cell lung cancer harboring an NTRK gene fusion. JCO Precis Oncol. 2018;2018:PO.18.00037.
Huson SM, Staab T, Pereira M, et al. Infantile fibrosarcoma with TPM3-NTRK1 fusion in a boy with bloom syndrome. Fam Cancer. 2022;21(1):85–90. https://doi.org/10.1007/s10689-020-00221-1 DOI: https://doi.org/10.1007/s10689-020-00221-1
Pehlivan KC, Malicki DM, Levy ML, et al. TPM3-NTRK1 fusion in a pleomorphic xanthoastrocytoma presenting with haemorrhage in a child. BMJ Case Rep. 2020 Mar 12;13(3):e234347. https://doi.org/10.1136/bcr-2020-234347 DOI: https://doi.org/10.1136/bcr-2020-234347
Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016 Apr 1;122(7):1097–107. https://doi.org/10.1002/cncr.29887 DOI: https://doi.org/10.1002/cncr.29887
Ricarte-Filho JC, Li S, Garcia-Rendueles ME, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013 Nov;123(11):4935–44. https://doi.org/10.1172/JCI69766 DOI: https://doi.org/10.1172/JCI69766
Davis JL, Lockwood CM, Stohr B, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol. 2019 Apr;43(4):435–45. https://doi.org/10.1097/PAS.0000000000001203 DOI: https://doi.org/10.1097/PAS.0000000000001203
Waguespack SG, Drilon A, Lin JJ, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol. 2022 Apr 29;186(6):631–43. https://doi.org/10.1530/EJE-21-1259 DOI: https://doi.org/10.1530/EJE-21-1259
Demetri GD, De Braud F, Drilon A, et al. Updated integrated analysis of the efficacy and safety of entrectinib in patients with NTRK fusion-positive solid tumors. Clin Cancer Res. 2022;28(7):1302–12. https://doi.org/10.1158/1078-0432.CCR-21-3597 DOI: https://doi.org/10.1158/1078-0432.CCR-21-3597
Bokemeyer C, Paracha N, Lassen U, et al. Survival outcomes of patients with tropomyosin receptor kinase fusion-positive cancer receiving larotrectinib versus standard of care: a matching-adjusted indirect comparison using real-world data. JCO Precis Oncol. 2023 Jan;7:e2200436. https://doi.org/10.1200/PO.22.00436 DOI: https://doi.org/10.1200/PO.22.00436
Kummar S, Berlin J, Mascarenhas L, et al. Quality of life in adult and pediatric patients with tropomyosin receptor kinase fusion cancer receiving larotrectinib. Curr Probl Cancer. 2021 Dec;45(6):100734. https://doi.org/10.1016/j.currproblcancer.2021.100734 DOI: https://doi.org/10.1016/j.currproblcancer.2021.100734
Bazhenova L, Lokker A, Snider J, et al. TRK fusion cancer: patient characteristics and survival analysis in the real-world setting. Target Oncol. 2021;16(3):389–99. https://doi.org/10.1007/s11523-021-00815-4 DOI: https://doi.org/10.1007/s11523-021-00815-4
Hibar DP, Demetri GD, Peters S, et al. Real-world survival outcomes in patients with locally advanced or metastatic NTRK fusion-positive solid tumors receiving standard-of-care therapies other than targeted TRK inhibitors. PLoS One. 2022;17(8):e0270571. https://doi.org/10.1371/journal.pone.0270571 DOI: https://doi.org/10.1371/journal.pone.0270571
Lassen U, Bokemeyer C, Garcia-Foncillas J, et al. Prognostic value of neurotrophic tyrosine receptor kinase gene fusions in solid tumors for overall survival: a systematic review and meta-analysis. JCO Precis Oncol. 2023 Jun;7:e2200651. https://doi.org/10.1200/PO.22.00651 DOI: https://doi.org/10.1200/PO.22.00651
Manea CA, Badiu DC, Ploscaru IC, et al. A review of NTRK fusions in cancer. Ann Med Surg. 2022;79:103893. https://doi.org/10.1016/j.amsu.2022.103893 DOI: https://doi.org/10.1016/j.amsu.2022.103893
Statistics Finland [Internet]. [cited 24-04-2024]. Available from: https://pxdata.stat.fi:443/PxWeb/sq/f784d3b8-2081-4b52-b09f-cd98b032cb43
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Wei Zhang, Arndt A. Schmitz, Roosa E. Kallionpää, Merja Perälä, Niina Pitkänen, Mikko Tukiainen, Erika Alanne, Korinna Jöhrens, Renate Schulze-Rath, Bahman Farahmand, Jihong Zong
This work is licensed under a Creative Commons Attribution 4.0 International License.