The use of an active appearance model for automated prostate segmentation in magnetic resonance

Authors

  • Anne Sofie Korsager Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
  • Ulrik Landberg Stephansen Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
  • Jesper Carl Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg, Denmark
  • Lasse Riis Østergaard Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

DOI:

https://doi.org/10.3109/0284186X.2013.822099

Abstract

Background. The prostate gland is delineated as the clinical target volume (CTV) in treatment planning of prostate cancer. Therefore, an accurate delineation is a prerequisite for efficient treatment. Accurate automated prostate segmentation methods facilitate the delineation of the CTV without inter-observer variation. The purpose of this study is to present an automated three-dimensional (3D) segmentation of the prostate using an active appearance model. Material and methods. Axial T2-weighted magnetic resonance (MR) scans were used to build the active appearance model. The model was based on a principal component analysis of shape and texture features with a level-set representation of the prostate shape instead of the selection of landmarks in the traditional active appearance model. To achieve a better fit of the model to the target image, prior knowledge to predict how to correct the model and pose parameters was incorporated. The segmentation was performed as an iterative algorithm to minimize the squared difference between the target and the model image. Results. The model was trained using manual delineations from 30 patients and was validated using leave-one-out cross validation where the automated segmentations were compared with the manual reference delineations. The mean and median dice similarity coefficient was 0.84 and 0.86, respectively. Conclusion. This study demonstrated the feasibility for an automated prostate segmentation using an active appearance with results comparable to other studies.

Downloads

Download data is not yet available.

Downloads

Additional Files

Published

2013-10-01

How to Cite

Sofie Korsager, A., Landberg Stephansen, U., Carl, J., & Riis Østergaard, L. (2013). The use of an active appearance model for automated prostate segmentation in magnetic resonance. Acta Oncologica, 52(7), 1374–1377. https://doi.org/10.3109/0284186X.2013.822099