Radiation Damage Induced Dose Rate Non-Linearity in an N-Type Silicon Detector

Authors

  • E Grusell Instrument ab Therados, S-75450, Uppsala, Sweden; Institute of Oncology, Division of Hospital Physics Akademiska Sjukhuset, s-75185, Uppsala, Sweden
  • G Rikner Instrument ab Therados, S-75450, Uppsala, Sweden; Institute of Oncology, Division of Hospital Physics Akademiska Sjukhuset, s-75185, Uppsala, Sweden

DOI:

https://doi.org/10.3109/02841868409136050

Abstract

Depth dose measurements in continuous cobalt radiation and pulsed roentgen rays were performed with non-irradiated and preirradiated detectors made of n-type silicon. A change in the relative signal at 15 cm depth of 5 to 10 per cent was found in pulsed roentgen ray fields when the detector was radiation damaged. Further experiments showed that the preirradiated detector had a superlinear dose response characteristic at high dose rates. A theoretic model was worked out and the non-linearity is explained by the properties of the recombination centers created during the preirradiation. The recombination centers are also responsible for the sensitivity drop after irradiation. At low dose rates in continuous radiation the non-linearity effect is not observed, which is in accordance with the theory. The theory in conjunction with our and other experimental results suggests that a p-silicon detector will remain linear also after heavy preirradiation.

Downloads

Download data is not yet available.

Downloads

Published

1984-01-01

How to Cite

Grusell, E., & Rikner, G. (1984). Radiation Damage Induced Dose Rate Non-Linearity in an N-Type Silicon Detector. Acta Oncologica, 23(6), 465–469. https://doi.org/10.3109/02841868409136050