Accuracy of gross tumour volume delineation with [68Ga]-PSMA-PET compared to histopathology for high-risk prostate cancer

Authors

  • Maryam Zarei Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden https://orcid.org/0000-0002-3955-3329
  • Elin Wallsten Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Josefine Grefve Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Karin Söderkvist Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
  • Adalsteinn Gunnlaugsson Skane University Hospital, Department of Hematology, Oncology and Radiation Physics, Lund, Sweden
  • Kristina Sandgren Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Joakim Jonsson Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Angsana Keeratijarut Lindberg Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Erik Nilsson Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Anders Bergh Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
  • Björn Zackrisson Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
  • Mathieu Moreau Skane University Hospital, Department of Hematology, Oncology and Radiation Physics, Lund, Sweden
  • Camilla Thellenberg Karlsson Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
  • Lars E. Olsson Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
  • Anders Widmark Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
  • Katrine Riklund Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
  • Lennart Blomqvist Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
  • Vibeke Berg Loegager Department of Radiology, Copenhagen University Hospital in Herlev, Herlev, Denmark
  • Jan Axelsson Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden
  • Sara N. Strandberg Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
  • Tufve Nyholm Department of Diagnostics and Intervention, Biomedical engineering and Radiation Physics, Umeå University, Umeå, Sweden

DOI:

https://doi.org/10.2340/1651-226X.2024.39041

Keywords:

Prostate cancer, PSMA-PET, Histopathology, semi-automatic segmentation

Abstract

Background: The delineation of intraprostatic lesions is vital for correct delivery of focal radiotherapy boost in patients with prostate cancer (PC). Errors in the delineation could translate into reduced tumour control and potentially increase the side effects. The purpose of this study is to compare PET-based delineation methods with histopathology.

Materials and methods: The study population consisted of 15 patients with confirmed high-risk PC intended for prostatectomy. [68Ga]-PSMA-PET/MR was performed prior to surgery. Prostate lesions identified in histopathology were transferred to the in vivo [68Ga]-PSMA-PET/MR coordinate system. Four radiation oncologists manually delineated intraprostatic lesions based on PET data. Various semi-automatic segmentation methods were employed, including absolute and relative thresholds, adaptive threshold, and multi-level Otsu threshold.

Results: The gross tumour volumes (GTVs) delineated by the oncologists showed a moderate level of interobserver agreement with Dice similarity coefficient (DSC) of 0.68. In comparison with histopathology, manual delineations exhibited the highest median DSC and the lowest false discovery rate (FDR) among all approaches. Among semi-automatic approaches, GTVs generated using standardized uptake value (SUV) thresholds above 4 (SUV > 4) demonstrated the highest median DSC (0.41), with 0.51 median lesion coverage ratio, FDR of 0.66 and the 95th percentile of the Hausdorff distance (HD95%) of 8.22 mm.

Interpretation: Manual delineations showed a moderate level of interobserver agreement. Compared to histopathology, manual delineations and SUV > 4 exhibited the highest DSC and the lowest HD95% values. The methods that resulted in a high lesion coverage were associated with a large overestimation of the size of the lesions.

Downloads

Download data is not yet available.

References

Pucar D, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastham J, et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys. 2007;69(1):62–9.

https://doi.org/10.1016/j.ijrobp.2007.03.065 DOI: https://doi.org/10.1016/j.ijrobp.2007.03.065

Arrayeh E, Westphalen AC, Kurhanewicz J, Roach III M, Jung AJ, Carroll PR, et al. Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys. 2012;82(5):e787–93.

https://doi.org/10.1016/j.ijrobp.2011.11.030 DOI: https://doi.org/10.1016/j.ijrobp.2011.11.030

Murray JR, Tree AC, Alexander EJ, Sohaib A, Hazell S, Thomas K, et al. Standard and hypofractionated dose escalation to intraprostatic tumor nodules in localized prostate cancer: Efficacy and toxicity in the DELINEATE trial. Int J Radiat Oncol Biol Phys. 2020;106(4):715–24.

https://doi.org/10.1016/j.ijrobp.2019.11.402 DOI: https://doi.org/10.1016/j.ijrobp.2019.11.402

Kerkmeijer LG, Groen VH, Pos FJ, Haustermans K, Monninkhof EM, Smeenk RJ, et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: results from the FLAME randomized phase III trial. 2021;39(7):787–96.

https://doi.org/10.1200/JCO.20.02873 DOI: https://doi.org/10.1200/JCO.20.02873

Steenbergen P, Haustermans K, Lerut E, Oyen R, De Wever L, Van den Bergh L, et al. Prostate tumor delineation using multiparametric magnetic resonance imaging: Inter-observer variability and pathology validation. Radiother Oncol. 2015;115(2):186–90.

https://doi.org/10.1016/j.radonc.2015.04.012 DOI: https://doi.org/10.1016/j.radonc.2015.04.012

van Schie MA, Dinh CV, van Houdt PJ, Pos FJ, Heijmink SW, Kerkmeijer LG, et al. Contouring of prostate tumors on multiparametric MRI: Evaluation of clinical delineations in a multicenter radiotherapy trial. Radiother Oncol. 2018;128(2):321–6. DOI: https://doi.org/10.1016/j.radonc.2018.04.015

Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5(6):856–63.

https://doi.org/10.1001/jamaoncol.2019.0096 DOI: https://doi.org/10.1001/jamaoncol.2019.0096

Liu W, Fakir H, Randhawa G, Alfano R, Corkum M, Kassam Z, et al. Defining radio-recurrent intra-prostatic target volumes using PSMA-targeted PET/CT and multi-parametric MRI. Clin Transl Radiat Oncol. 2022;32:41–7. DOI: https://doi.org/10.1016/j.ctro.2021.11.006

Matushita CS, Silva AM, Schuck PN, Bardisserotto M, Piant DB, Pereira JL, et al. 68 Ga-Prostate-specific membrane antigen (PSMA) positron emission tomography (pet) in prostate cancer: a systematic review and meta-analysis. Int Braz J Urol. 2021;47:705–29.

https://doi.org/10.1590/s1677-5538.ibju.2019.0817 DOI: https://doi.org/10.1590/s1677-5538.ibju.2019.0817

Zamboglou C, Fassbender TF, Steffan L, Schiller F, Fechter T, Carles M, et al. Validation of different PSMA-PET/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference. Radiother Oncol. 2019;141:208–13.

https://doi.org/10.1016/j.radonc.2019.07.002 DOI: https://doi.org/10.1016/j.radonc.2019.07.002

Spohn SK, Kramer M, Kiefer S, Bronsert P, Sigle A, Schultze-Seemann W, et al. Comparison of manual and semi-automatic [18F] PSMA-1007 PET based contouring techniques for intraprostatic tumor delineation in patients with primary prostate cancer and validation with histopathology as standard of reference. Front Oncol. 2020;10:600690.

https://doi.org/10.3389/fonc.2020.600690 DOI: https://doi.org/10.3389/fonc.2020.600690

Alfano R, Bauman GS, Liu W, Thiessen JD, Rachinsky I, Pavlosky W, et al. Histologic validation of auto-contoured dominant intraprostatic lesions on [18F] DCFPyL PSMA-PET imaging. Radiother Oncol. 2020;152:34–41.

https://doi.org/10.1016/j.radonc.2020.08.008 DOI: https://doi.org/10.1016/j.radonc.2020.08.008

Im H-J, Bradshaw T, Solaiyappan M, Cho SY. Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging. 2018;52:5–15. DOI: https://doi.org/10.1007/s13139-017-0493-6

Gardin I. Methods to delineate tumour for radiotherapy by fluorodeoxyglucose positron emission tomography. Cancer/Radiothérapie. 2020;24(5):418–22.

https://doi.org/10.1016/j.canrad.2020.04.008 DOI: https://doi.org/10.1016/j.canrad.2020.04.008

Nilsson E, Sandgren K, Grefve J, Jonsson J, Axelsson J, Lindberg AK, et al. The grade of individual prostate cancer lesions predicted by magnetic resonance imaging and positron emission tomography. Commun Med. 2023;3(1):164.

https://doi.org/10.1038/s43856-023-00394-7 DOI: https://doi.org/10.1038/s43856-023-00394-7

Sandgren K, Nilsson E, Lindberg AK, Strandberg S, Blomqvist L, Bergh A, et al. Registration of histopathology to magnetic resonance imaging of prostate cancer. Phys Imaging Radiat Oncol. 2021;18:19–25.

https://doi.org/10.1016/j.phro.2021.03.004 DOI: https://doi.org/10.1016/j.phro.2021.03.004

Nyholm T, Berglund M, Brynolfsson P, Jonsson J. EP-1533: ICE-Studio-An Interactive visual research tool for image analysis. Radiother Oncol. 2015;115:S837.

https://doi.org/10.1016/S0167-8140(15)41525-7

Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2009;29(1):196–205. DOI: https://doi.org/10.1109/TMI.2009.2035616

https://doi.org/10.1016/S0167-8140(15)41525-7 DOI: https://doi.org/10.1016/S0167-8140(15)41525-7

McCormick M, Liu X, Jomier J, Marion C, Ibanez L. ITK: enabling reproducible research and open science. Front Neuroinform. 2014;8:13.

https://doi.org/10.3389/fninf.2014.00013 DOI: https://doi.org/10.3389/fninf.2014.00013

Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004;23(7):903–21.

https://doi.org/10.1109/TMI.2004.828354 DOI: https://doi.org/10.1109/TMI.2004.828354

Bradley D, Roth G. Adaptive thresholding using the integral image. J Graph Tools. 2007;12(2):13–21.

https://doi.org/10.1080/2151237X.2007.10129236 DOI: https://doi.org/10.1080/2151237X.2007.10129236

Lee I, Im H-J, Solaiyappan M, Cho SY. Comparison of novel multi-level Otsu (MO-PET) and conventional PET segmentation methods for measuring FDG metabolic tumor volume in patients with soft tissue sarcoma. EJNMMI Phys. 2017;4(1):1–10.

https://doi.org/10.1186/s40658-017-0189-0 DOI: https://doi.org/10.1186/s40658-017-0189-0

Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports. Acad Radiol. 2004;11(2):178–89. DOI: https://doi.org/10.1016/S1076-6332(03)00671-8

Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45(9):1519–27.

Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96. DOI: https://doi.org/10.1016/j.compbiomed.2014.04.014

Seifert R, Sandach P, Kersting D, Fendler WP, Hadaschik B, Herrmann K, et al. Repeatability of 68Ga-PSMA-HBED-CC PET/CT–derived total molecular tumor volume. J Nucl Med. 2022;63(5):746–53.

https://doi.org/10.2967/jnumed.121.262528 DOI: https://doi.org/10.2967/jnumed.121.262528

Zhang Y-N, Lu Z-G, Wang S-D, Lu X, Zhu L-L, Yang X, et al. Gross tumor volume delineation in primary prostate cancer on 18F-PSMA-1007 PET/MRI and 68Ga-PSMA-11 PET/MRI. Cancer Imaging. 2022;22(1):1–11.

https://doi.org/10.1186/s40644-022-00475-1 DOI: https://doi.org/10.1186/s40644-022-00475-1

Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

https://doi.org/10.2967/jnumed.106.035774 DOI: https://doi.org/10.2967/jnumed.106.035774

Caribé PR, Koole M, D’Asseler Y, Deller TW, Van Laere K, Vandenberghe S. NEMA NU 2–2007 performance characteristics of GE Signa integrated PET/MR for different PET isotopes. EJNMMI Phys. 2019;6:1–13.

https://doi.org/10.1186/s40658-019-0247-x DOI: https://doi.org/10.1186/s40658-019-0247-x

Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, et al. Comparison of [18 F] DCFPyL and [68 Ga] Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol. 2015;17:575–84.

https://doi.org/10.1007/s11307-015-0866-0 DOI: https://doi.org/10.1007/s11307-015-0866-0

Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, et al. New PET technologies–embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging. 2021;48(9):2711–26.

https://doi.org/10.1007/s00259-021-05390-4 DOI: https://doi.org/10.1007/s00259-021-05390-4

Additional Files

Published

2024-06-23

How to Cite

Zarei, M., Wallsten, E. ., Grefve, J. ., Söderkvist, K., Gunnlaugsson, A. ., Sandgren, K., … Nyholm, T. (2024). Accuracy of gross tumour volume delineation with [68Ga]-PSMA-PET compared to histopathology for high-risk prostate cancer. Acta Oncologica, 63(1), 503–510. https://doi.org/10.2340/1651-226X.2024.39041

Issue

Section

Original article

Categories