Classic Kaposi sarcoma: Diagnostics, treatment modalities, and genetic implications – A review of the literature

Authors

  • Ron Batash Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy https://orcid.org/0000-0002-5274-7347
  • Alberto Crimí Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy https://orcid.org/0000-0002-1095-6159
  • Riad Kassem Dermatology Unit, Sheba Medical Center, Ramat-gan, Israel; Tel Aviv University, Faculty of Medicine, Tel Aviv, Israel
  • Murad Asali Urology department, Barziali Medical Center, Ashkelon, Israel
  • Ishay Ostfeld Department of Thoracic surgeon, Baruch Padeh Medical Center, Poriya, Israel
  • Carlo Biz Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy https://orcid.org/0000-0001-8517-0057
  • Pietro Ruggieri Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Padova, Italy https://orcid.org/0000-0001-9617-9882
  • Moshe Schaffer Oncology department, Barzilai Medical Center, Ashkelon, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Israel

DOI:

https://doi.org/10.2340/1651-226X.2024.40537

Keywords:

Classic Kaposi Sarcoma, Treatment, guidelines, gene mutations, BPTF

Abstract

Background and purpose: Classic Kaposi sarcoma (CKS) is a rare vascular disease mainly found in populations of Mediterranean origin. The pathogenesis involves Human Herpes Virus 8 (HHV8) and genetic mutations such as SNP309 in the MDM2 gene. The recently discovered BPTF mutation in cells of CKS patients demonstrated higher latency-associated nuclear antigen (LANA) staining and altered vital transcriptomics, implicating a potential role in tumorigenesis. This review explores the genetic underpinnings and treatments for CKS.

Material and methods: A comprehensive literature search was conducted from 2004 to 2024, yielding 70 relevant papers. Ongoing clinical trials investigating novel treatments such as talimogene and abemaciclib were included in the search and presented in the results.

Results: Clinical diagnosis and treatment can be challenging as the number of studies on CKS and treatment modalities is limited. Treatment strategies vary by disease stage, with local therapies like surgical intervention and radiation therapy recommended for early stages, while systemic therapies are considered in cases of systemic disease.

Interpretation: While advancements in CKS treatment offer hope, further studies on immunotherapy are warranted to broaden the therapeutic options, such as anti-bromodomain or BPTF-targeted therapy.

Downloads

Download data is not yet available.

References

Grulich AE, Beral V, Swerdlow AJ. Kaposi’s sarcoma in England and Wales before the AIDS epidemic. Br J Cancer. 1992;66(6):1135–7.

https://doi.org/10.1038/bjc.1992.423 DOI: https://doi.org/10.1038/bjc.1992.423

Lebbe C, Garbe C, Stratigos AJ, Harwood C, Peris K, Del Marmol V, et al. Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur J Cancer. 2019;114:117–127.

https://doi.org/10.1016/j.ejca.2018.12.036 DOI: https://doi.org/10.1016/j.ejca.2018.12.036

Behar DM, Yunusbayev B, Metspalu M, Metspalu E, Rosset S, Parik J, et al. The genome-wide structure of the Jewish people. Nature. 2010;466(7303):238–242.

https://doi.org/10.1038/nature09103 DOI: https://doi.org/10.1038/nature09103

Davidovici B, Karakis I, Bourboulia D, Ariad S, Zong JC, Benharroch D, et al. Seroepidemi-ology and molecular epidemiology of Kaposi’s Sarcoma-associated herpesvi-rus among Jewish Population Groups in Israel. J Natl Cancer Inst. 2001;93(3):194–202.

https://doi.org/10.1093/jnci/93.3.194 DOI: https://doi.org/10.1093/jnci/93.3.194

Goedert JJ, Calamusa G, Dazzi C, Perna A, Pelser C, Anderson LA, et al. Risk of classic Ka-posi sarcoma with exposures to plants and soils in Sicily. Infect Agent Cancer. 2010;5(1):23.

https://doi.org/10.1186/1750-9378-5-23 DOI: https://doi.org/10.1186/1750-9378-5-23

Ascoli V, Senis G, Zucchetto A, Valerio L, Facchinelli L, Budroni M, et al. Distribution of ‘promoter’ sandflies associated with incidence of classic Kaposi’s sarcoma. Med Vet Entomol. 2009;23(3):217–25.

https://doi.org/10.1111/j.1365-2915.2009.00811.x DOI: https://doi.org/10.1111/j.1365-2915.2009.00811.x

Guttman-Yassky E, Cohen A, Kra-Oz Z, Friedman-Birnbaum R, Sprecher E, Zaltzman N, et al. Familial clustering of Classic Kaposi Sarcoma. J Infect Dis. 2004;189(11):2023–6.

https://doi.org/10.1086/386308 DOI: https://doi.org/10.1086/386308

Yogev Y, Schaffer M, Shlapobersky M, Jean MM, Wormser O, Drabkin M, et al. A role of BPTF in viral oncogenicity delineated through studies of heritable Kaposi sarcoma. J Med Virol. 2024;96(2):e29436.

https://doi.org/10.1002/jmv.29436 DOI: https://doi.org/10.1002/jmv.29436

Aavikko M, Kaasinen E, Nieminen JK, Byun M, Donner I, Mancuso R, et al. Whole-genome sequencing identifies STAT4 as a putative susceptibility gene in Classic Kaposi Sarcoma. J Infect Dis. 2014;211(11): 1842–51.

https://doi.org/10.1093/infdis/jiu667 DOI: https://doi.org/10.1093/infdis/jiu667

Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207(11):2307–12.

https://doi.org/10.1084/jem.20101597 DOI: https://doi.org/10.1084/jem.20101597

Johnson EL, Pierpont YN, Donate G, Hiro MH, Mannari RJ, Strickland TJ, et al. Clinical chal-lenge: Cutaneous Kaposi’s sarcoma of the lower extremity*. Int Wound J. 2011;8(2):163–8.

https://doi.org/10.1111/j.1742-481X.2010.00763.x DOI: https://doi.org/10.1111/j.1742-481X.2010.00763.x

Buonaguro FM, Tornesello ML, Beth‐Giraldo E, Hatzakis A, Mueller N, Downing R, et al. Herpesvirus‐like DNA sequences detected in endemic, classic, iatrogenic and epidemic Kaposi’s sarcoma (KS) biopsies. Int J Cancer. 1996;65(1):25–28. DOI: https://doi.org/10.1002/(SICI)1097-0215(19960103)65:1<25::AID-IJC5>3.3.CO;2-Q

https://doi.org/10.1002/(SICI)1097-0215(19960103)65:1%3C25::AID-IJC5%3E3.3.CO;2-Q

Casper C, Carrell D, Miller KG, Judson FD, Meier AS, Pauk JS, et al. HIV serodiscordant sex partners and the prevalence of human herpesvirus 8 infection among HIV nega-tive men who have sex with men: baseline data from the EXPLORE Study. Sex Transm Infect. 2006;82(3): 229–35.

https://doi.org/10.1136/sti.2005.016568 DOI: https://doi.org/10.1136/sti.2005.016568

Si H, Robertson ES. Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibi-tion of p53 function. J Virol. 2006;80(2):697–709.

https://doi.org/10.1128/JVI.80.2.697-709.2006 DOI: https://doi.org/10.1128/JVI.80.2.697-709.2006

Lee HR, Toth Z, Shin YC, Lee JS, Chang H, Gu W, et al. Kaposi’s sarcoma-associated her-pesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol. 2009;83(13):6739–47.

https://doi.org/10.1128/JVI.02353-08 DOI: https://doi.org/10.1128/JVI.02353-08

Boulanger E, Marchio A, Hong SS, Pineau P. Mutational analysis of TP53, PTEN, PIK3CA and CTNNB1/beta-catenin genes in human herpesvirus 8-associated primary effusion lymphoma. Haematologica. 2009;94(8):1170–4.

https://doi.org/10.3324/haematol.2009.007260 DOI: https://doi.org/10.3324/haematol.2009.007260

Tornesello ML, Buonaguro L, Cristillo M, Biryahwaho B, Downing R, Hatzakis A, et al. MDM2 and CDKN1A gene polymorphisms and risk of Kaposi’s sarcoma in Afri-can and Caucasian patients. Biomarkers. 2011;16(1):42–50.

https://doi.org/10.3109/1354750X.2010.525664 DOI: https://doi.org/10.3109/1354750X.2010.525664

Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Prim. 2019;5(1):9.

https://doi.org/10.1038/s41572-019-0060-9 DOI: https://doi.org/10.1038/s41572-019-0060-9

Stankiewicz P, Khan TN, Szafranski P, Slattery L, Streff H, Vetrini F, et al. Haploinsufficiency of the chromatin remodeler BPTF causes syndromic developmental and speech delay, postnatal microcephaly, and dysmorphic features. Am J Hum Genet. 2017;101(4):503–15.

https://doi.org/10.1016/j.ajhg.2017.08.014 DOI: https://doi.org/10.1016/j.ajhg.2017.08.014

Zhang G, Chan B, Samarina N, Abere B, Weidner-Glunde M, Buch A, et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the in-nate immune DNA sensor cGAS. Proc Natl Acad Sci. 2016;113(8):E1034–E1043.

https://doi.org/10.1073/pnas.1516812113 DOI: https://doi.org/10.1073/pnas.1516812113

Marušić Z, Billings SD. Histopathology of spindle cell vascular tumors. Surg Pathol Clin. 2017;10(2):345–366.

https://doi.org/10.1016/j.path.2017.01.006 DOI: https://doi.org/10.1016/j.path.2017.01.006

Radu O, Pantanowitz L. Kaposi sarcoma. Arch Pathol Lab Med. 2013;137(2):289–94.

https://doi.org/10.5858/arpa.2012-0101-RS DOI: https://doi.org/10.5858/arpa.2012-0101-RS

Brambilla L, Boneschi V, Taglioni M, Ferrucci S. Staging of classic Kaposi’s sarcoma: a useful tool for therapeutic choices. Eur J Dermatol. 2003;13(1):83–6.

Addula D, Das CJ, Kundra V. Imaging of Kaposi sarcoma. Abdom Radiol (NY). 2021;46(11):5297–306.

https://doi.org/10.1007/s00261-021-03205-6 DOI: https://doi.org/10.1007/s00261-021-03205-6

Zer A, Icht O, Yosef L, Avram D, Jacobi O, Fenig E et al. Phase II single-arm study of nivolumab and ipilimumab (Nivo/Ipi) in previously treated classical Kaposi sar-coma (cKS). Ann Oncol. 2022;33(7):720–727.

https://doi.org/10.1016/j.annonc.2022.03.012 DOI: https://doi.org/10.1016/j.annonc.2022.03.012

Odyakmaz Demirsoy E, Bayramgürler D, Çağlayan Ç, Bilen N, Şikar Aktürk A, Kıran R. Imiquimod 5% cream vVersus cryotherapy in Classic Kaposi Sarcoma. J Cutan Med Surg. 2019;23(5):488–95.

https://doi.org/10.1177/1203475419847954 DOI: https://doi.org/10.1177/1203475419847954

Schartz NEC, Chevret S, Paz C, Kerob D, Verola O, Morel P, et al. Imiquimod 5% cream for treatment of HIV-negative Kaposi’s sarcoma skin lesions: a phase I to II, open-label trial in 17 patients. J Am Acad Dermatol. 2008;58(4):585–91.

https://doi.org/10.1016/j.jaad.2007.11.005 DOI: https://doi.org/10.1016/j.jaad.2007.11.005

Aboulafia DM, Norris D, Henry D, Grossman RJ, Thommes J, Bundow D, et al. 9-cis-retinoic acid capsules in the treatment of AIDS-related Kaposi Sarcoma: results of a phase 2 multicenter clinical trial. Arch Dermatol. 2003;139(2):178–86.

https://doi.org/10.1001/archderm.139.2.178 DOI: https://doi.org/10.1001/archderm.139.2.178

Htet KZ, Waul MA, Leslie KS. Topical treatments for Kaposi sarcoma: a systematic review. Skin Health Dis. 2022;2(2):e107.

https://doi.org/10.1002/ski2.107 DOI: https://doi.org/10.1002/ski2.107

Aral İP, Altinişik İG, Aytaç Arslan S, Tekin S, Göçer Gürok N, Arslan A, et al. Role of radio-therapy in Kaposi’s Sarcoma: review of the literature. Turk J Oncol. 2021;36(3):389–400.

https://doi.org/10.5505/tjo.2021.2563 DOI: https://doi.org/10.5505/tjo.2021.2563

Singh NB, Lakier RH, Donde B. Hypofractionated radiation therapy in the treatment of epidemic Kaposi sarcoma – a prospective randomized trial. Radiother Oncol. 2008;88(2):211–6.

https://doi.org/10.1016/j.radonc.2008.03.009 DOI: https://doi.org/10.1016/j.radonc.2008.03.009

Tsao MN, Sinclair E, Assaad D, Fialkov J, Antonyshyn O, Barnes E. Radiation therapy for the treatment of skin Kaposi sarcoma. Ann Palliat Med. 2016;5(4):298–302.

https://doi.org/10.21037/apm.2016.08.03 DOI: https://doi.org/10.21037/apm.2016.08.03

Hauerstock D, Gerstein W, Vuong T. Results of radiation therapy for treatment of classic Kaposi sarcoma. J Cutan Med Surg. 2009;13(1):18–21.

https://doi.org/10.2310/7750.2008.07076 DOI: https://doi.org/10.2310/7750.2008.07076

Reschke R, Grunewald S, Schueuermann M, Simon JC, Ziemer M. Value of first-line surgi-cal treatment for classic Kaposi sarcoma and potential use of checkpoint in-hibitors. J Dtsch Dermatol Ges. 2020;18(3):256–62.

https://doi.org/10.1111/ddg.14039 DOI: https://doi.org/10.1111/ddg.14039

Weintraub CM, Skudowitz RB. Excision of 1,674 classic Kaposi’s sarcomas. S Afr J Surg. 2002;40(2):80.

Saiag P, Brunet H, Fortier-Beaulieu M. Local treatments of AIDS-related Kaposi disease. Ann Dermatol Venereol. 1995;122(8):551–7.

Kutlubay Z, Küçüktas M, Engin B, Serdaroglu S. Evaluation of effectiveness of cryotherapy on the treatment of cutaneous Kaposi’s sarcoma. Dermatol Surg. 2013;39(10):1502–6.

https://doi.org/10.1111/dsu.12285 DOI: https://doi.org/10.1111/dsu.12285

Özdemir M, Balevi A. Successful treatment of Classic Kaposi Sarcoma with long-pulse neodymium-doped Yttrium aluminum garnet laser: a preliminary study. Derma-tol Surg. 2017;43(3):366–70.

https://doi.org/10.1097/DSS.0000000000000973 DOI: https://doi.org/10.1097/DSS.0000000000000973

Boudreaux AA, Smith LL, Cosby CD, Bason MM, Tappero JW, Berger TG. Intralesional vin-blastine for cutaneous Kaposi’s sarcoma associated with acquired immuno-deficiency syndrome. A clinical trial to evaluate efficacy and discomfort associ-ated with infection. J Am Acad Dermatol. 1993;28(1):61–5.

https://doi.org/10.1016/0190-9622(93)70010-Q DOI: https://doi.org/10.1016/0190-9622(93)70010-Q

Brambilla L, Bellinvia M, Tourlaki A, Scoppio B, Gaiani F, Boneschi V. Intralesional vincris-tine as first-line therapy for nodular lesions in classic Kaposi sarcoma: a pro-spective study in 151 patients. Br J Dermatol. 2010;162(4):854–9.

https://doi.org/10.1111/j.1365-2133.2009.09601.x DOI: https://doi.org/10.1111/j.1365-2133.2009.09601.x

Curatolo P, Quaglino P, Marenco F, Mancini M, Nardò T, Mortera C, et al. Electrochemo-therapy in the treatment of Kaposi sarcoma cutaneous lesions: a two-center prospective phase II trial. Ann Surg Oncol. 2012;19(1):192–8.

https://doi.org/10.1245/s10434-011-1860-7 DOI: https://doi.org/10.1245/s10434-011-1860-7

Bonadies A, Bertozzi E, Cristiani R, Govoni FA, Migliano E. Electrochemotherapy in skin malignancies of head and neck cancer patients: clinical efficacy and aesthetic benefits. Acta Derm Venereol. 2019;99(13):1246–1252.

https://doi.org/10.2340/00015555-3341 DOI: https://doi.org/10.2340/00015555-3341

Régnier-Rosencher E, Guillot B, Dupin N. Treatments for classic Kaposi sarcoma: a sys-tematic review of the literature. J Am Acad Dermatol. 2013;68(2):313–31.

https://doi.org/10.1016/j.jaad.2012.04.018 DOI: https://doi.org/10.1016/j.jaad.2012.04.018

D’Amico F, Fuxman C, Nachman F, Bitetti L, Fauda M, Echevarria C, et al. Visceral Kaposi’s sarcoma remission after intestinal transplant. First case report and systematic literature review. Transplantation. 2010;90(5):547–54.

https://doi.org/10.1097/TP.0b013e3181ea3936 DOI: https://doi.org/10.1097/TP.0b013e3181ea3936

Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincris-tine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445–51.

https://doi.org/10.1200/JCO.1998.16.7.2445 DOI: https://doi.org/10.1200/JCO.1998.16.7.2445

Stewart S, Jablonowski H, Goebel FD, Arasteh K, Spittle M, Rios A, et al. Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol. 1998;16(2):683–91.

https://doi.org/10.1200/JCO.1998.16.2.683 DOI: https://doi.org/10.1200/JCO.1998.16.2.683

Martín-Carbonero L, Barrios A, Saballs P, Sirera G, Santos J, Palacios R, et al. Pegylated liposomal doxorubicin plus highly active antiretroviral therapy versus highly ac-tive antiretroviral therapy alone in HIV patients with Kaposi’s sarcoma. AIDS. 2004;18(12):1737–40.

https://doi.org/10.1097/01.aids.0000131385.60974.b9 DOI: https://doi.org/10.1097/01.aids.0000131385.60974.b9

Di Lorenzo G, Kreuter A, Di Trolio R, Guarini A, Romano C, Montesarchio V, et al. Activity and safety of pegylated liposomal doxorubicin as first-line therapy in the treat-ment of non-visceral classic Kaposi’s sarcoma: a multicenter study. J Invest Dermatol. 2008;128(6):1578–80.

https://doi.org/10.1038/sj.jid.5701215 DOI: https://doi.org/10.1038/sj.jid.5701215

Di Lorenzo G, Di Trolio R, Montesarchio V, Palmieri G, Nappa P, Delfino M, et al. Pegylated liposomal doxorubicin as second-line therapy in the treatment of patients with advanced classic Kaposi sarcoma: a retrospective study. Cancer. 2008;112(5):1147–52.

https://doi.org/10.1002/cncr.23264 DOI: https://doi.org/10.1002/cncr.23264

Kreuter A, Rasokat H, Klouche M, Esser S, Bader A, Gambichler T, et al. Liposomal pegylat-ed doxorubicin versus low-dose recombinant interferon Alfa-2a in the treat-ment of advanced classic Kaposi’s sarcoma; retrospective analysis of three German centers. Cancer Invest. 2005;23(8):653–9.

https://doi.org/10.1080/07357900500358259 DOI: https://doi.org/10.1080/07357900500358259

Reid E, Suneja G, Ambinder RF, Ard K, Baiocchi R, Barta SK, et al. AIDS-related Kaposi Sar-coma, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(2):171–189.

https://doi.org/10.6004/jnccn.2019.0100 DOI: https://doi.org/10.6004/jnccn.2019.0100

Paksoy N, Khanmammadov N, Doğan İ, Ferhatoğlu F, Ahmed MA, Karaman S, et al. Weekly paclitaxel treatment in the first-line therapy of classic Kaposi sarcoma: a real-life study. Medicine (Baltimore). 2023;102(5):e32866.

https://doi.org/10.1097/MD.0000000000032866 DOI: https://doi.org/10.1097/MD.0000000000032866

Esser S, Schöfer H, Hoffmann C, Claßen J, Kreuter A, Leiter U, et al. S1 guidelines for the Kaposi Sarcoma. J Dtsch Dermatol Ges. 2022;20(6):892–904.

https://doi.org/10.1111/ddg.14788 DOI: https://doi.org/10.1111/ddg.14788

Valantin MA, Royston L, Hentzien M, Jary A, Makinson A, Veyri M, et al. Therapeutic per-spectives in the systemic treatment of Kaposi’s Sarcoma. Cancers (Basel). 2022;14(3):484.

https://doi.org/10.3390/cancers14030484 DOI: https://doi.org/10.3390/cancers14030484

Harris BHL, Walsh JL, Neciunaite R, Manders P, Cooper A, De Souza P. Ring a ring o’roses, a patient with Kaposi’s? Pazopanib, pazopanib, it might go away. Mediterranean (classic) Kaposi sarcoma responds to the tyrosine kinase inhibitor pazopanib after multiple lines of standard therapy. Clin Exp Dermatol. 2018;43(2):234–236.

https://doi.org/10.1111/ced.13302 DOI: https://doi.org/10.1111/ced.13302

Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, et al. The anti-cancer drug lenalido-mide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86.

https://doi.org/10.1016/j.mvr.2008.08.003 DOI: https://doi.org/10.1016/j.mvr.2008.08.003

Ramaswami R, Polizzotto MN, Lurain K, Wyvill KM, Widell A, George J, et al. Safety, activity, and long-term outcomes of pomalidomide in the treatment of Kaposi Sarcoma among Individuals with or without HIV infection. Clin Cancer Res. 2022;28(5):840–50.

https://doi.org/10.1158/1078-0432.CCR-21-3364 DOI: https://doi.org/10.1158/1078-0432.CCR-21-3364

Uldrick TS, Wyvill KM, Kumar P, O’Mahony D, Bernstein W, Aleman K, et al. Phase II study of bevacizumab in patients with HIV-associated Kaposi’s sarcoma receiving an-tiretroviral therapy. J Clin Oncol. 2012;30(13):1476–83.

https://doi.org/10.1200/JCO.2011.39.6853 DOI: https://doi.org/10.1200/JCO.2011.39.6853

Ablanedo‐Terrazas Y, Alvarado‐de la Barrera C, Ormsby CE, Ruiz‐Cruz M, Reyes‐Terán G. Intralesional bevacizumab in patients with human immunodeficiency virus-associated Kaposi’s sarcoma in the upper airway. Laryngoscope. 2015;125(4):E132–7.

https://doi.org/10.1002/lary.24988 DOI: https://doi.org/10.1002/lary.24988

Uldrick TS, Gonçalves PH, Wyvill KM, Peer CJ, Bernstein W, Aleman K, et al. A Phase Ib study of Sorafenib (BAY 43-9006) in patients with Kaposi Sarcoma. Oncologist. 201722(5):505–e49.

https://doi.org/10.1634/theoncologist.2016-0486 DOI: https://doi.org/10.1634/theoncologist.2016-0486

Schaffer M, Kassem R, Shlomo B, Livoff A, Asna N, Zidan J. Unusually high prevalence of classical Kaposi’s sarcoma in Druze Muslims of Northern Israel. J Eur Acad Dermatol Venereol. 2018;32(2):e80–1.

https://doi.org/10.1111/jdv.14535 DOI: https://doi.org/10.1111/jdv.14535

Netweork, N.C.C. Kaposi Sarcoma (Version 1.2024). [cited 26-03-2024]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/kaposi.pdf

de Oliveira DE, Ballon G, Cesarman E. NF– κB signaling modulation by EBV and KSHV. Trends Microbiol. 2010;18(6):248–57.

https://doi.org/10.1016/j.tim.2010.04.001 DOI: https://doi.org/10.1016/j.tim.2010.04.001

Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Investig. 2012;122(10):3439–47.

https://doi.org/10.1172/JCI61245 DOI: https://doi.org/10.1172/JCI61245

Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist antibodies for cancer immuno-therapy: history, hopes, and challenges. Clin Cancer Res. 2024;30(9): 1712–23.

https://doi.org/10.1158/1078-0432.CCR-23-1014 DOI: https://doi.org/10.1158/1078-0432.CCR-23-1014

Dalal S, Shan KS, Thaw Dar NN, Hussein A, Ergle A. Role of immunotherapy in sarcomas. Int J Mol Sci. 2024;25(2):1266.

https://doi.org/10.3390/ijms25021266 DOI: https://doi.org/10.3390/ijms25021266

da Cunha CSC, Lebbé C, Rybojad M, Agbalika F, Ferchal F, Rabian C, et al. Long-term fol-low-up of non-HIV Kaposi’s sarcoma treated with low-dose recombinant inter-feron alfa-2b. Arch Dermatol. 1996;132(3):285–90. DOI: https://doi.org/10.1001/archderm.132.3.285

https://doi.org/10.1001/archderm.1996.03890270061008 DOI: https://doi.org/10.1001/archderm.1996.03890270061008

Published

2024-10-16

How to Cite

Batash, R., Crimí, A., Kassem, R., Asali, M., Ostfeld, I., Biz, C., … Schaffer, M. (2024). Classic Kaposi sarcoma: Diagnostics, treatment modalities, and genetic implications – A review of the literature. Acta Oncologica, 63(1), 783–790. https://doi.org/10.2340/1651-226X.2024.40537