Incidence, characteristics, and comorbidities of a complete unselected Danish cohort of patients with thymic epithelial tumors
DOI:
https://doi.org/10.2340/1651-226X.2025.41295Keywords:
Thymoma, thymic carcinoma, epidemiology, autoimmune disease, second cancerAbstract
Background and purpose: We report the incidence, characteristics, and comorbidities of the complete unselected Danish cohort of patients with thymic epitheliums (TETs), which may serve as evidence for guiding treatment, surveillance, and counselling of TET patients.
Patients and methods: All patients diagnosed with TETs from January 1st, 2015, to December 31st, 2020, were identified using the Danish Pathology Data Registry. Data on patient characteristics, comorbidities, and tumor histology were collected from electronic medical records available for all patients.
Results: The cohort consisted of 283 patients with a mean age of 64 years (SD: 12). The crude rate was 8.2/1,000,000 TETs annually, thus higher than the age-standardized rates of 4.8/1,000,000 in the WHO World Standard Population and 6.1/1,000,000 in the European Standard Population. Thymomas were diagnosed in 240 patients (85%) (9% type A, 31% AB, 18% B1, 26% B2, 6% B3, 5% micronodular, 0.4% metaplastic, and 5% of unspecified subtype), thymic carcinomas in 39 patients (14%), and thymic neuroendocrine tumors in 4 patients (1.4%). Tumors in Tumour, Node, Metastasis (TNM) stage I were diagnosed in 181 patients (64%) and were mostly thymomas (72%). Prior to TET diagnosis, 91 (32%) patients presented with autoimmune disorders (19% myasthenia gravis) and 82 patients (29%) had at least one cancer diagnosis.
Interpretation: We found a higher incidence of TETs in Denmark than in previous European population-based studies, while reporting a similar distribution of histological types and tumor stages. Furthermore, we found an increased prevalence of autoimmune disorders and cancers in the cohort before TET diagnosis compared to the general population.
Downloads
References
WHO Classification of Tumours Editorial Board. Thoracic tumours. In: WHO classification of tumours. 5th ed. 2021. p. 319–99, IARC Publications Lyon, Frnace.
Ruffini E, Detterbeck F, van raemdonck D, Rocco G, Thomas P, Weder W, et al. Tumours of the thymus: a cohort study of prognostic factors from the European Society of Thoracic Surgeons database. Eur J Cardiothorac Surg. 2014;46(3):361–8. DOI: https://doi.org/10.1093/ejcts/ezt649
https://doi.org/10.1093/ejcts/ezt649 DOI: https://doi.org/10.1093/ejcts/ezt649
Padda SK, Yao X, Antonicelli A, Riess JW, Shang Y, Shrager JB, et al. Paraneoplastic syndromes and thymic malignancies: an examination of the international thymic malignancy interest group retrospective database. J Thorac Oncol. 2018;13(3):436–46. DOI: https://doi.org/10.1016/j.jtho.2017.11.118
https://doi.org/10.1016/j.jtho.2017.11.118 DOI: https://doi.org/10.1016/j.jtho.2017.11.118
Weksler B, Nason KS, MacKey D, Gallagher A, Pennathur A. Thymomas and extrathymic cancers. Ann Thorac Surg. 2012;93(3):884–8. DOI: https://doi.org/10.1016/j.athoracsur.2011.05.089
https://doi.org/10.1016/j.athoracsur.2011.05.089 DOI: https://doi.org/10.1016/j.athoracsur.2011.05.089
Blum TG, Misch D, Kollmeier J, Thiel S, Bauer TT. Autoimmune disorders and paraneoplastic syndromes in thymoma. J Thorac Dis. 2020;12:7571–90. DOI: https://doi.org/10.21037/jtd-2019-thym-10
https://doi.org/10.21037/jtd-2019-thym-10 DOI: https://doi.org/10.21037/jtd-2019-thym-10
Erichsen R, Lash TL, Hamilton-Dutoit SJ, Bjerregaard B, Vyberg M, Pedersen L. Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank. Clin Epidemiol. 2010;2:51–6. DOI: https://doi.org/10.2147/CLEP.S9908
https://doi.org/10.2147/clep.s9908 DOI: https://doi.org/10.2147/CLEP.S9908
Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Wiley; 2016. DOI: https://doi.org/10.1002/9780471420194.tnmc26.pub3
Silva dos S. Cancer epidemiology: principles and methods. IARC Publ; 1999.
Ahmad OB, Boschi-Pinto C, Lopez AD, Murray CJ, Lozano R, Inoue M. Age standardization of rates: a new WHO standard obesity project view project medical migration view project. 2001. [Accessed on June 5th 2024] Available from: https://www.researchgate.net/publication/284696312
Danmarks Statistik. Danmarks Statestik [Internet]. Vol. 5. Statistikbanken; 2020. p. 248–53. [Accessed on May 12th 2024] Available from: https://www.statistikbanken.dk/statbank5a/default.asp?w=1920.
Gadalla SM, Rajan A, Pfeiffer R, Kristinsson SY, Björkholm M, Landgren O, et al. A population-based assessment of mortality and morbidity patterns among patients with thymoma. Int J Cancer. 2011;128(11):2688–94. DOI: https://doi.org/10.1002/ijc.25583
https://doi.org/10.1002/ijc.25583 DOI: https://doi.org/10.1002/ijc.25583
de Jong WK, Blaauwgeers JLG, Schaapveld M, Timens W, Klinkenberg TJ, Groen HJM. Thymic epithelial tumours: a population-based study of the incidence, diagnostic procedures and therapy. Eur J Cancer. 2008;44(1):123–30. DOI: https://doi.org/10.1016/j.ejca.2007.11.004
https://doi.org/10.1016/j.ejca.2007.11.004 DOI: https://doi.org/10.1016/j.ejca.2007.11.004
Borg M, Hilberg O, Andersen MB, Weinreich UM, Rasmussen TR. Increased use of computed tomography in Denmark: stage shift toward early stage lung cancer through incidental findings. Acta Oncol (Madr). 2022;61(10):1256–62. DOI: https://doi.org/10.1080/0284186X.2022.2135134
https://doi.org/10.1080/0284186X.2022.2135134 DOI: https://doi.org/10.1080/0284186X.2022.2135134
Shin DW, Cho JH, Ha J, Jung KW. Trends in incidence and survival of patients with thymic epithelial tumor in a high-incidence Asian country: analysis of the Korean Central Cancer Registry 1999 to 2017. J Thorac Oncol. 2022;17(6):827–37. DOI: https://doi.org/10.1016/j.jtho.2022.02.001
https://doi.org/10.1016/j.jtho.2022.02.001 DOI: https://doi.org/10.1016/j.jtho.2022.02.001
Hsu CH, Chan JK, Yin CH, Lee CC, Chern CU, Liao CI. Trends in the incidence of thymoma, thymic carcinoma, and thymic neuroendocrine tumor in the United States. PLoS One. 2019;14(12):e0227197. DOI: https://doi.org/10.1371/journal.pone.0227197
https://doi.org/10.1371/journal.pone.0227197 DOI: https://doi.org/10.1371/journal.pone.0227197
Weis CA, Yao X, Deng Y, Detterbeck FC, Marino M, Nicholson AG, et al. The impact of thymoma histotype on prognosis in a worldwide database. J Thorac Oncol. 2015;10(2):367–72. DOI: https://doi.org/10.1097/JTO.0000000000000393
https://doi.org/10.1097/JTO.0000000000000393 DOI: https://doi.org/10.1097/JTO.0000000000000393
Eaton WW, Rose NR, Kalaydjian A, Pedersen MG, Mortensen PB. Epidemiology of autoimmune diseases in Denmark. J Autoimmun. 2007;29(1):1–9. DOI: https://doi.org/10.1016/j.jaut.2007.05.002
https://doi.org/10.1016/j.jaut.2007.05.002 DOI: https://doi.org/10.1016/j.jaut.2007.05.002
Bernard C, Frih H, Pasquet F, Kerever S, Jamilloux Y, Tronc F, et al. Thymoma associated with autoimmune diseases: 85 cases and literature review. Autoimmun Rev. 2016;15(1):82–92. DOI: https://doi.org/10.1016/j.autrev.2015.09.005
https://doi.org/10.1016/j.autrev.2015.09.005 DOI: https://doi.org/10.1016/j.autrev.2015.09.005
Registries Association of the Nordic Cancer Registries. Predictions – trends [Internet]. NORDCAN IARC; 2022 [cited 2024 Feb 5]. Available from: https://nordcan.iarc.fr/en/dataviz/predictions_trends?key=cum_risk&populations=208&age_end=12&sexes=0&cancers=990
Additional Files
Published
How to Cite
License
Copyright (c) 2025 Tine Østergaard, Caroline V.A. Bjerke, Eric Santoni-Rigui, Thomas H.L. Jensen, Katharina A. Perell, René H. Petersen, Peter M. Petersen

This work is licensed under a Creative Commons Attribution 4.0 International License.