Circulating tumor DNA for surveillance in high-risk melanoma patients: a study protocol
DOI:
https://doi.org/10.2340/1651-226X.2025.42515Keywords:
Biomarker, liquid biopsy, skin, molecular analysis, Actionable MutationsAbstract
Background and purpose: Melanoma is one of the deadliest skin cancers and challenges clinicians worldwide due to rising incidence, potential aggressiveness, and propensity for metastasis, necessitating comprehensive follow-up programs after primary treatment.
Circulating tumor DNA (ctDNA) is a promising biomarker that may indicate disease progression earlier than traditional surveillance methods, including 18F-FDG PET-CT, ultrasound, and clinical examination. This study examines ctDNA detection in blood as a minimally invasive method for early identification of progression following primary treatment of melanoma. The aim is to overcome the limitations of current methods, potentially improving prognosis and survival.
Patients/material and methods: Patients with high risk of recurrence following primary treatment of melanoma are offered inclusion. Blood sampling is performed at each follow-up visit. In case of recurrence, patient-specific mutations are identified through next-generation sequencing (NGS) of formalin and paraffin embedded tissue from diagnostic routine. Detection of mutation-specific ctDNA is performed on blood using digital droplet polymerase chain reaction (ddPCR) or NGS. This allows determination of the value and sensitivity of ctDNA for early detection of recurrence.
Results and Interpretation: For validation purposes, we conducted a small pilot study using blood samples from 10 patients who had experienced recurrence and had a clinically confirmed BRAF V600E mutation. Detection of BRAF V600E ctDNA using ddPCR varied from 0/5 (0%) in DNA harvested from 4 mL plasma, to 3/5 (60%) in DNA from 8 mL of plasma. These results show promise and highlight the importance of high sensitivity and sampling volumes to ensure accurate detection of low levels of ctDNA.
Downloads
References
Nelson DW, Fischer TD, Graff-Baker AN, Dehal A, Stern S, Bilchik AJ, et al. Impact of effective systemic therapy on metastasectomy in stage IV melanoma: a matched-pair analysis. Ann Surg Oncol. 2019;26:4610–8.
https://doi.org/10.1245/s10434-019-07487-5 DOI: https://doi.org/10.1245/s10434-019-07487-5
Adler S, Seidel J, Choyke P, Knopp MV, Binzel K, Zhang J, et al. Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys. 2017;4:1–14.
https://doi.org/10.1186/s40658-017-0179-2 DOI: https://doi.org/10.1186/s40658-017-0179-2
Helvind NM, Mardones CAA, Hölmich LR, Hendel HW, Bidstrup PE, Sørensen JA, et al. Routine PET-CT scans provide early and accurate recurrence detection in asymptomatic stage IIB-III melanoma patients. Eur J Surg Oncol. 2021;47:3020–7.
https://doi.org/10.1016/j.ejso.2021.06.011 DOI: https://doi.org/10.1016/j.ejso.2021.06.011
Lee JW, Nam SB, Kim SJ. Role of 18F-fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography for the detection of recurrent disease after treatment of malignant melanoma. Oncology. 2019;97:286–93.
https://doi.org/10.1159/000501398 DOI: https://doi.org/10.1159/000501398
Tsao SCH, Weiss J, Hudson C, Christophi C, Cebon J, Behren A, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.
https://doi.org/10.1038/srep11198 DOI: https://doi.org/10.1038/srep11198
Harpio R, Einarsson R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin Biochem. 2004;37:512–8.
https://doi.org/10.1016/j.clinbiochem.2004.05.012 DOI: https://doi.org/10.1016/j.clinbiochem.2004.05.012
Tivey A, Britton F, Scott JA, Rothwell D, Lorigan P, Lee R. Circulating tumour DNA in melanoma – clinic ready? Curr Oncol Rep. 2022;24:363–73.
https://doi.org/10.1007/s11912-021-01151-6 DOI: https://doi.org/10.1007/s11912-021-01151-6
Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372:eaaw3616.
https://doi.org/10.1126/science.aaw3616 DOI: https://doi.org/10.1126/science.aaw3616
Sumbal S, Javed A, Afroze B, Zulfiqar HF, Javed F, Noreen S, et al. Circulating tumor DNA in blood: future genomic biomarkers for cancer detection. Exp Hematol. 2018;65:17–28.
https://doi.org/10.1016/j.exphem.2018.06.003 DOI: https://doi.org/10.1016/j.exphem.2018.06.003
Diefenbach RJ, Lee JH, Rizos H. Monitoring melanoma using circulating free DNA. Am J Clin Dermatol. 2019;20:1–12.
https://doi.org/10.1007/s40257-018-0398-x DOI: https://doi.org/10.1007/s40257-018-0398-x
Lee JS, Kim M, Seong MW, Kim HS, Lee YK, Kang HJ. Plasma vs. serum in circulating tumor DNA measurement: characterization by DNA fragment sizing and digital droplet polymerase chain reaction. Clin Chem Lab Med. 2020;58:527–32.
https://doi.org/10.1515/cclm-2019-0896 DOI: https://doi.org/10.1515/cclm-2019-0896
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.
https://doi.org/10.1038/nm.1789 DOI: https://doi.org/10.1038/nm.1789
Vymetalkova V, Cervena K, Bartu L, Vodicka P. Circulating cell-free DNA and colorectal cancer: a systematic review. Int J Mol Sci. 2018;19:3356.
https://doi.org/10.3390/ijms19113356 DOI: https://doi.org/10.3390/ijms19113356
McEvoy AC, Warburton L, Al-Ogaili Z, Celliers L, Calapre L, Pereira MR, et al. Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer. 2018;18:726.
https://doi.org/10.1186/s12885-018-4637-6 DOI: https://doi.org/10.1186/s12885-018-4637-6
Mesquita A, Costa JL, Schmitt F. Utility of circulating tumor DNA in different clinical scenarios of breast cancer. Cancers. 2020;12:3797.
https://doi.org/10.3390/cancers12123797 DOI: https://doi.org/10.3390/cancers12123797
Johansson G, Andersson D, Filges S, Li J, Muth A, Godfrey TE, et al. Considerations and quality controls when analyzing cell-free tumor DNA. Biomol Detect Quantif. 2019;17:100078.
https://doi.org/10.1016/j.bdq.2018.12.003 DOI: https://doi.org/10.1016/j.bdq.2018.12.003
Busser B, Lupo J, Sancey L, Mouret S, Faure P, Plumas J, et al. Plasma circulating tumor DNA levels for the monitoring of melanoma patients: landscape of available technologies and clinical applications. BioMed Res Int. 2017;2017:1–8.
https://doi.org/10.1155/2017/5986129 DOI: https://doi.org/10.1155/2017/5986129
Santonja A, Cooper WN, Eldridge MD, Edwards PAW, Morris JA, Edwards AR, et al. Comparison of tumor‐informed and tumor‐naïve sequencing assays for ctDNA detection in breast cancer. EMBO Mol Med. 2023;15:e16505.
https://doi.org/10.15252/emmm.202216505 DOI: https://doi.org/10.15252/emmm.202216505
Dawson SJ, Tsui DWY, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.
https://doi.org/10.1056/NEJMoa1213261 DOI: https://doi.org/10.1056/NEJMoa1213261
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer genes. Nature. 2013;499:214–8.
https://doi.org/10.1038/nature12213 DOI: https://doi.org/10.1038/nature12213
Uguen A, Guéguen P, Talagas M, Costa S, De Braekeleer M, Marcorelles P. BRAF and NRAS mutations are not mutually exclusive in melanoma and in single melanoma cells. Appl Immunohistochem Mol Morphol. 2016;24:e14–5.
https://doi.org/10.1097/PAI.0000000000000217 DOI: https://doi.org/10.1097/PAI.0000000000000217
Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.
https://doi.org/10.1016/j.cell.2012.06.024 DOI: https://doi.org/10.1016/j.cell.2012.06.024
Lin SY, Orozco JIJ, Hoon DSB. Detection of minimal residual disease and its clinical applications in melanoma and breast cancer patients. Adv Exp Med Biol. 2018;1100:83–95.
https://doi.org/10.1007/978-3-319-97746-1_5 DOI: https://doi.org/10.1007/978-3-319-97746-1_5
Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28:1130–6.
https://doi.org/10.1093/annonc/mdx026 DOI: https://doi.org/10.1093/annonc/mdx026
Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6:42008–18.
https://doi.org/10.18632/oncotarget.5788 DOI: https://doi.org/10.18632/oncotarget.5788
Lee JH, Saw RP, Thompson JF, Lo S, Spillane AJ, Shannon KF, et al. Pre-operative ctDNA predicts survival in high-risk stage III cutaneous melanoma patients. Ann Oncol. 2019;30:815–22.
https://doi.org/10.1093/annonc/mdz075 DOI: https://doi.org/10.1093/annonc/mdz075
McEvoy AC, Pereira MR, Reid A, Pearce R, Cowell L, Al-Ogaili Z, et al. Monitoring melanoma recurrence with circulating tumor DNA: a proof of concept from three case studies. Oncotarget. 2019;10:113–22.
https://doi.org/10.18632/oncotarget.26451 DOI: https://doi.org/10.18632/oncotarget.26451
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.
https://doi.org/10.1038/nrc.2017.7 DOI: https://doi.org/10.1038/nrc.2017.7
Eroglu Z, Krinshpun S, Kalashnikova E, Sudhaman S, Ozturk Topcu T, Nichols M, et al. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer. 2023;129:1723–34.
https://doi.org/10.1002/cncr.34716 DOI: https://doi.org/10.1002/cncr.34716
Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7.
https://doi.org/10.7326/0003-4819-158-3-201302050-00583 DOI: https://doi.org/10.7326/0003-4819-158-3-201302050-00583
Downloads
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Magnús P.B. Obinah, Sarah A. Al-Halafi, Karin Dreisig, Tim S. Poulsen, Christoffer Johansen, Thomas Litman, Stig E. Bojesen, Estrid Høgdall, Annette H. Chakera, Lisbet R. Hölmich

This work is licensed under a Creative Commons Attribution 4.0 International License.