Short term treatment of secondary lymphedema with hyaluronidase injections reduces mouse hindlimb lymphedema

Authors

  • Farima Dalaei Research Unit of Plastic Surgery, Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Clinical Institute, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0003-2305-7758
  • Amar Bucan Research Unit of Plastic Surgery, Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Clinical Institute, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0003-2775-8463
  • Alexander Wiinholt Research Unit of Plastic Surgery, Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Clinical Institute, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0003-4760-3549
  • Mads Gustaf Jørgensen Research Unit of Plastic Surgery, Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Clinical Institute, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0002-8755-3446
  • Christian Rønn Hansen Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark; Institute of Clinical Research, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0001-5716-6069
  • Christina Baun Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark https://orcid.org/0000-0002-5199-9200
  • Svend Hvidsten Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark https://orcid.org/0000-0002-8857-4521
  • Eva Kildall Hejbøl Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark https://orcid.org/0000-0002-3462-321X
  • Henrik Daa Schrøder Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Pathology, Odense University Hospital, Odense, Denmark https://orcid.org/0000-0001-7588-235X
  • Jens Ahm Sørensen Research Unit of Plastic Surgery, Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Clinical Institute, University of Southern Denmark, Odense, Denmark https://orcid.org/0000-0003-4903-0094

DOI:

https://doi.org/10.2340/jphs.v58.7791

Keywords:

Secondary Lymphedema, hyaluronidase, hyalase, HYAL, treatment of secondary lymphedema, treatment of lymphedema, animal model

Abstract

Lymphedema is a common complication following breast cancer treatment with axillary lymphadenectomy and radiotherapy. Currently, there is no curative treatment for this disease, hence there is a need for new therapeutic suggestions. The aim of this study was to investigate the effect of hyaluronidase (HYAL) injections after inducing hindlimb lymphedema in 36 female C57BL/6 mice. HYAL injections were administered every second day for 14 days in three groups: (1) HYAL for 1 week followed by saline for 1 week, (2) HYAL for 2 weeks, and (3) saline injections for 2 weeks. Volume of the lymphedema limb was weekly assessed with micro-computed tomography (μ-CT) scans for a total course of 6 weeks. Lymph vessel morphometry was assessed in the end of the study after staining cross-sections of the hindlimb for anti-LYVE-1 blindly. Lymphatic function was assessed by lymphoscintigraphy to assess lymphatic clearance. There was a significant reduction of the volume of lymphedema in mice treated with HYAL-7 compared with mice treated with HYAL-14 (p < 0.05) and saline (p < 0.05). No differences were detected in lymph vessel morphometry and the lymphoscintigraphy between groups. Short-term treatment with HYAL-7 might be a potential therapeutic suggestion for secondary lymphedema induced in mouse hindlimbs. In the future, clinical studies are needed to investigate the potential of HYAL treatment in human beings. 

Downloads

Download data is not yet available.

References

DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–515. https://doi.org/10.1016/S1470-2045(13)70076-7 DOI: https://doi.org/10.1016/S1470-2045(13)70076-7

Armer JM, Ballman KV, McCall L, Ostby PL, Zagar E, Kuerer HM, et al. Factors associated with lymphedema in women with node-positive breast cancer treated with neoadjuvant chemotherapy and axillary dissection. JAMA Surg. 2019;154(9):800–809. https://doi.org/10.1001/jamasurg.2019.1742 DOI: https://doi.org/10.1001/jamasurg.2019.1742

Rogan S, Taeymans J, Luginbuehl H, Aebi M, Mahnig S, Gebruers N. Therapy modalities to reduce lymphoedema in female breast cancer patients: a systematic review and meta-analysis. Breast Cancer Res Treat. 2016;159(1):1–14. https://doi.org/10.1007/s10549-016-3919-4 DOI: https://doi.org/10.1007/s10549-016-3919-4

Weiler MJ, Cribb MT, Nepiyushchikh Z, Nelson TS, Dixon JB. A novel mouse tail lymphedema model for observing lymphatic pump failure during lymphedema development. Sci Rep. 2019;9(1):10405. https://doi.org/10.1038/s41598-019-46797-2 DOI: https://doi.org/10.1038/s41598-019-46797-2

Bates DO, Levick JR, Mortimer PS. Change in macromolecular composition of interstitial fluid from swollen arms after breast cancer treatment, and its implications. Clin Sci (Lond). 1993;85(6):737–746. https://doi.org/10.1042/cs0850737 DOI: https://doi.org/10.1042/cs0850737

Ryan TJ. Lymphatics and adipose tissue. Clin Dermatol. 1995;13(5):493–498. DOI: https://doi.org/10.1016/0738-081X(95)00092-T

Hespe GE, Nores GG, Huang JJ, Mehrara BJ. Pathophysiology of lymphedema-Is there a chance for medication treatment? J Surg Oncol. 2017;115(1):96–98. https://doi.org/10.1002/jso.24414 DOI: https://doi.org/10.1002/jso.24414

Beederman M, Chang DW. Advances in surgical treatment of lymphedema. Arch Plast Surg. 2021;48(6):670–677. DOI: https://doi.org/10.5999/aps.2021.01445

Liu NF, Zhang LR. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology. 1998;31(4):173–179.

Cho S, Roh K, Park J, Park YS, Lee M, Cho S, et al. Hydrolysis of hyaluronic acid in lymphedematous tissue alleviates fibrogenesis via TH1 Cell-mediated cytokine expression. Sci Rep. 2017;7(1):35. https://doi.org/10.1038/s41598-017-00085-z DOI: https://doi.org/10.1038/s41598-017-00085-z

Steen EH, Short WD, Li H, Parikh UM, Blum A, Templeman N, et al. Skin-specific knockdown of hyaluronan in mice by an optimized topical 4-methylumbelliferone formulation. Drug Deliv. 2021;28(1):422–432. https://doi.org/10.1080/10717544.2021.1886376 DOI: https://doi.org/10.1080/10717544.2021.1886376

Ogston AG, Sherman TF. Effects of hyaluronic acid upon diffusion of solutes and flow of solvent. J Physiol. 1961;156:67–74. DOI: https://doi.org/10.1113/jphysiol.1961.sp006658

Brix B, Apich G, Rössler A, Walbrodt S, Goswami N. Effects of physical therapy on hyaluronan clearance and volume regulating hormones in lower limb lymphedema patients: a pilot study. Sci Prog. 2021;104(1):36850421998485. https://doi.org/10.1177/0036850421998485 DOI: https://doi.org/10.1177/0036850421998485

Roh K, Cho S, Park JH, Yoo BC, Kim WK, Kim SK, et al. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp Biol Med (Maywood). 2017;242(6):584–592. DOI: https://doi.org/10.1177/1535370216688570

Magistro CM. Hyaluronidase by iotophoresis in the treatment of edema. Phys Ther. 1964;44:169–175. https://doi.org/10.1093/ptj/44.3.169 DOI: https://doi.org/10.1093/ptj/44.3.169

Huang X, Han S, Chen Z, Zhao L, Wang C, Guo Q, et al. Layered double hydroxide modified with deoxycholic and hyaluronic acids for efficient oral insulin absorption. Int J Nanomed. 2021;16:7861–7873. https://doi.org/10.2147/IJN.S323381 DOI: https://doi.org/10.2147/IJN.S323381

Cañibano-Hernández A, Saenz Del Burgo L, Espona-Noguera A, Orive G, Hernández RM, Ciriza J, et al. Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. Int J Pharm. 2019;557:192–198. DOI: https://doi.org/10.1016/j.ijpharm.2018.12.062

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410 DOI: https://doi.org/10.1371/journal.pbio.3000410

Jorgensen MG, Toyserkani NM, Hansen CR, Hvidsten S, Baun C, Hejbol EK, et al. Quantification of chronic lymphedema in a revised mouse model. Ann Plast Surg. 2018;81(5):594–603. DOI: https://doi.org/10.1097/SAP.0000000000001537

Wiinholt A, Jørgensen MG, Bučan A, Dalaei F, Sørensen JA. A Revised method for inducing secondary lymphedema in the hindlimb of mice. J Vis Exp. 2019;153:e60578. https://doi.org/10.3791/60578-v DOI: https://doi.org/10.3791/60578

Modi S, Stanton AW, Mortimer PS, Levick JR. Clinical assessment of human lymph flow using removal rate constants of interstitial macromolecules: a critical review of lymphoscintigraphy. Lymphat Res Biol. 2007;5(3):183–202. https://doi.org/10.1089/lrb.2007.5306 DOI: https://doi.org/10.1089/lrb.2007.5306

Roberts MA, Mendez U, Gilbert RJ, Keim AP, Goldman J. Increased hyaluronan expression at distinct time points in acute lymphedema. Lymphat Res Biol. 2012;10(3):122–128. https://doi.org/10.1089/lrb.2012.0001 DOI: https://doi.org/10.1089/lrb.2012.0001

Wiinholt A, Gerke O, Dalaei F, Bučan A, Madsen CB, Sørensen JA. Quantification of tissue volume in the hindlimb of mice using microcomputed tomography images and analysing software. Sci Rep. 2020;10(1):8297. https://doi.org/10.1038/s41598-020-65214-7 DOI: https://doi.org/10.1038/s41598-020-65214-7

Bucan A, Wiinholt A, Dalaei F, Gerke O, Hansen CR, Sørensen JA. Microcomputed tomography versus plethysmometer and electronic caliper in the measurements of lymphedema in the hindlimb of mice. Sci Rep. 2022;12(1):12267. https://doi.org/10.1038/s41598-022-16311-2 DOI: https://doi.org/10.1038/s41598-022-16311-2

Lafuente H, Jaunarena I, Ansuategui E, Lekuona A, Izeta A. Cell therapy as a treatment of secondary lymphedema: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12(1):578. https://doi.org/10.1186/s13287-021-02632-y DOI: https://doi.org/10.1186/s13287-021-02632-y

Juhasz MLW, Cohen JL. Microneedling for the treatment of scars: an update for clinicians. Clin Cosmet Investig Dermatol. 2020;13:997–1003. DOI: https://doi.org/10.2147/CCID.S267192

El-Domyati M, Barakat M, Awad S, Medhat W, El-Fakahany H, Farag H. Microneedling therapy for atrophic acne scars: an objective evaluation. J Clin Aesthet Dermatol. 2015;8(7):36–42.

Busch KH, Aliu A, Bender R, Walezko N, Aust MC. [Medical needling: effect on skin tension and elasticity of hypertrophic burn scars]. Handchir Mikrochir Plast Chir. 2019;51(5):384–393. https://doi.org/10.1055/a-0996-8572 DOI: https://doi.org/10.1055/a-0996-8572

Jeong HJ, Roh KH, Kim GC, Kim YO, Lee JH, Lee MJ, et al. Hyaluronidase treatment of acute lymphedema in a mouse tail model. Lymphology. 2013;46(4):160–172.

Nekoroski T, Paladini RD, Sauder DN, Frost GI, Keller GA. A recombinant human hyaluronidase sustained release gel for the treatment of post-surgical edema. Int J Dermatol. 2014;53(6):777–785. https://doi.org/10.1111/ijd.12304 DOI: https://doi.org/10.1111/ijd.12304

Hadrian R, Palmes D. Animal models of secondary lymphedema: new approaches in the search for therapeutic options. Lymphat Res Biol. 2017;15(1):2–16. https://doi.org/10.1089/lrb.2016.0015 DOI: https://doi.org/10.1089/lrb.2016.0015

Published

2023-06-20

How to Cite

Dalaei, F., Bucan, A., Wiinholt, A., Jørgensen, M. G., Hansen, C. R., Baun, C., … Sørensen, J. A. (2023). Short term treatment of secondary lymphedema with hyaluronidase injections reduces mouse hindlimb lymphedema. Journal of Plastic Surgery and Hand Surgery, 58, 40–47. https://doi.org/10.2340/jphs.v58.7791

Issue

Section

Original Research Articles