Effect of oxygen therapy duration on cognitive impairment 12 months after hospitalization for SARS-COV-2 infection

Authors

  • Amandine Rapin Department of Physical and Rehabilitation Medicine, hôpital Sebastopol, Reims, France; Faculty of Medicine, Reims Champagne-Ardenne University, MATIM, Reims, France VieFra, EA3797, Reims, France
  • Arnaud Calmus Department of Physical and Rehabilitation Medicine, hôpital Sebastopol, Reims, France; Reims Champagne-Ardenne University, C2S, EA6291, Reims, France
  • Charles Pradeau Physical and Rehabilitation Medicine department, Strasbourg University Hospital, Strasbourg, France
  • Redha Taiar Reims Champagne-Ardenne University, MATIM, Reims, France
  • Gaël Belassian Department of Physical and Rehabilitation Medicine, hôpital Sebastopol, Reims, France
  • Olivier Godefroy Functional neuroscience and pathologies laboratory (UR UPJV 4559), Amiens University Hospital , Amiens, France
  • Sandy Carazo-Mendez Department of Physical and Rehabilitation Medicine, hôpital Sebastopol, Reims, France
  • Francois C. Boyer Department of Physical and Rehabilitation Medicine, hôpital Sebastopol, Reims, France; Faculty of Medicine, Reims Champagne-Ardenne University, MATIM, Reims, France VieFra, EA3797, Reims, France

DOI:

https://doi.org/10.2340/jrm.v55.12609

Keywords:

COVID-19, cognitive dysfunction, oxygen inhalation therapy, follow-up studies

Abstract

Objective: To identify predictors of persistent cognitive impairment at 12 months after hospitalization due to COVID-19 (SARS-CoV-2) infection.

Design: Retrospective, single-centre study.

Subjects: All consecutive patients assessed in physical and rehabilitation medicine consultations at 3 months with a neuropsychiatric testing (NPT) at 6 months.

Methods: A Mini Mental State Examination (MMSE) was performed at 3 months and NPT at 6 and 12 months, exploring global cognitive efficiency, attention and processing speed, short-term memory and executive function. Logistic regression and receiver operating characteristic curves were used to identify predictors of persistent cognitive impairment.

Results: Among 56 patients, 64.3% and 53.6% had 1 or more impaired cognitive functions at 6 and 12 months, respectively, attention and processing speed being the most represented (41.1% at 12 month). Duration of oxygen therapy (odds ratio 0.926 [0.871–0.985], p = 0.015) and MMSE score at 3 months (odds ratio 0.464 [0.276–0.783], p = 0.004) were associated with cognitive impairment at 12 months by multivariable analysis (R² 0.372–0.497).

Conclusions: Half of patients have cognitive impairment 12 months after acute SARS-CoV-2 infection requiring hospitalization. The duration of oxygen therapy in acute care could be a protective parameter. Systematic evaluation with the MMSE at 3 months after infection might be an effective tool to detect risk.

Downloads

Download data is not yet available.

References

Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022; 22: e102-e107.

https://doi.org/10.1016/S1473-3099(21)00703-9 DOI: https://doi.org/10.1016/S1473-3099(21)00703-9

Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021; 372: n136.

https://doi.org/10.1136/bmj.n136 DOI: https://doi.org/10.1136/bmj.n136

Tavares-Júnior JWL, de Souza ACC, Borges JWP, Oliveira DN, Siqueira-Neto JI, Sobreira-Neto MA, et al. COVID-19 associated cognitive impairment: a systematic review. Cortex J Devoted Study Nerv Syst Behav 2022; 152: 77-97.

https://doi.org/10.1016/j.cortex.2022.04.006 DOI: https://doi.org/10.1016/j.cortex.2022.04.006

Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 2021; 24: 168-175. DOI: https://doi.org/10.1101/2020.06.04.135012

https://doi.org/10.1038/s41593-020-00758-5 DOI: https://doi.org/10.1038/s41593-020-00758-5

Lemprière S. SARS-CoV-2 detected in olfactory neurons. Nat Rev Neurol 2021; 17: 63.

https://doi.org/10.1038/s41582-020-00449-6 DOI: https://doi.org/10.1038/s41582-020-00449-6

Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020; 19: 919-929.

https://doi.org/10.1016/S1474-4422(20)30308-2 DOI: https://doi.org/10.1016/S1474-4422(20)30308-2

Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, et al. Neuropathological Features of Covid-19. N Engl J Med 2020; 383: 989-992.

https://doi.org/10.1056/NEJMc2019373 DOI: https://doi.org/10.1056/NEJMc2019373

Walitt B, Johnson TP. The pathogenesis of neurologic symptoms of the postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Neurol 2022; 35: 384-391.

https://doi.org/10.1097/WCO.0000000000001051 DOI: https://doi.org/10.1097/WCO.0000000000001051

Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol 2022; 23: 210-216.

https://doi.org/10.1038/s41590-021-01113-x DOI: https://doi.org/10.1038/s41590-021-01113-x

Käufer C, Schreiber CS, Hartke A-S, Denden I, Stanelle-Bertram S, Beck S, et al. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine 2022; 79: 103999.

https://doi.org/10.1016/j.ebiom.2022.103999 DOI: https://doi.org/10.1016/j.ebiom.2022.103999

Klimkiewicz J, Pankowski D, Wytrychiewicz-Pankowska K, Klimkiewicz A, Siwik P, Klimczuk J, et al. Analysis of the relationship among cognitive impairment, nutritional indexes and the clinical course among COVID-19 patients discharged from hospital-preliminary report. Nutrients 2022; 14: 1580.

https://doi.org/10.3390/nu14081580 DOI: https://doi.org/10.3390/nu14081580

Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain J Neurol 2021; 144: 1263-1276.

https://doi.org/10.1093/brain/awab009 DOI: https://doi.org/10.1093/brain/awab009

Dressing A, Bormann T, Blazhenets G, Schroeter N, Walter LI, Thurow J, et al. Neuropsychological profiles and cerebral glucose metabolism in neurocognitive Long COVID-syndrome. J Nucl Med 2022; 63: 1058-1063.

https://doi.org/10.2967/jnumed.121.262677 DOI: https://doi.org/10.2967/jnumed.121.262677

Lee M-H, Perl DP, Nair G, Li W, Maric D, Murray H, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med 2021; 384: 481-483. DOI: 10.1056/NEJMc2033369

https://doi.org/10.1056/NEJMc2033369 DOI: https://doi.org/10.1056/NEJMc2033369

Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis. J Neurol Sci 2022; 434: 120162. DOI: 10.1016/j.jns.2022.120162

https://doi.org/10.1016/j.jns.2022.120162 DOI: https://doi.org/10.1016/j.jns.2022.120162

Alkodaymi MS, Omrani OA, Fawzy NA, Shaar BA, Almamlouk R, Riaz M, et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: a systematic review and meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2022; 28: 657-666.

https://doi.org/10.1016/j.cmi.2022.01.014 DOI: https://doi.org/10.1016/j.cmi.2022.01.014

Zeng N, Zhao YM, Yan W, Li C, Lu QD, Liu L, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry 2023; 28: 423-433.

https://doi.org/10.1038/s41380-022-01614-7 DOI: https://doi.org/10.1038/s41380-022-01614-7

Ferrucci R, Dini M, Rosci C, Capozza A, Groppo E, Reitano MR, et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur J Neurol 2022; 29: 2006-2014.

https://doi.org/10.1111/ene.15324 DOI: https://doi.org/10.1111/ene.15324

Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine 2021: 39: 101044.

https://doi.org/10.1016/j.eclinm.2021.101044 DOI: https://doi.org/10.1016/j.eclinm.2021.101044

Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: a COVID-rehabilitation unit experience. PloS One 2021; 16: e0246590.

https://doi.org/10.1371/journal.pone.0246590 DOI: https://doi.org/10.1371/journal.pone.0246590

Negrini F, Ferrario I, Mazziotti D, Berchicci M, Bonazzi M, de Sire A, et al. Neuropsychological features of severe hospitalized coronavirus disease 2019 patients at clinical stability and clues for postacute rehabilitation. Arch Phys Med Rehabil 2021; 102: 155-158.

https://doi.org/10.1016/j.apmr.2020.09.376 DOI: https://doi.org/10.1016/j.apmr.2020.09.376

Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res 2020; 129: 98-102.

https://doi.org/10.1016/j.jpsychires.2020.06.022 DOI: https://doi.org/10.1016/j.jpsychires.2020.06.022

Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry 2021; 92: 567-568.

https://doi.org/10.1136/jnnp-2020-325173 DOI: https://doi.org/10.1136/jnnp-2020-325173

Almeria M, Cejudo JC, Sotoca J, Deus J, Krupinski J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav Immun - Health 2020; 9: 100163.

https://doi.org/10.1016/j.bbih.2020.100163 DOI: https://doi.org/10.1016/j.bbih.2020.100163

Wechsler, D. Wechsler adult intelligence scale - Fourth Edition (WAIS-IV). NCS Pearson, France; 2008.

https://doi.org/10.1037/t15169-000 DOI: https://doi.org/10.1037/t15169-000

Beaujean AA, Benson NF, McGill RJ, Dombrowski SC. A misuse of IQ scores: using the dual discrepancy/consistency model for identifying specific learning disabilities. J Intell 2018; 6: 36.

https://doi.org/10.3390/jintelligence6030036 DOI: https://doi.org/10.3390/jintelligence6030036

Ouvrard C, Berr C, Meillon C, Ribet C, Goldberg M, Zins M, et al. Norms for standard neuropsychological tests from the French CONSTANCES cohort. Eur J Neurol 2019; 26: 786-793.

https://doi.org/10.1111/ene.13890 DOI: https://doi.org/10.1111/ene.13890

Fimm B, Zimmermann P. Testbatterie zur Aufmerksamkeitsprüfung (TAP), Version 2.1. 2008. Psytest, Herzogenrath.

Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand 1983; 67: 361-370.

https://doi.org/10.1111/j.1600-0447.1983.tb09716.x DOI: https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res 2002; 52: 69-77.

https://doi.org/10.1016/S0022-3999(01)00296-3 DOI: https://doi.org/10.1016/S0022-3999(01)00296-3

Learmonth YC, Dlugonski D, Pilutti LA, Sandroff BM, Klaren R, Motl RW. Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale. J Neurol Sci 2013; 331: 102-107.

https://doi.org/10.1016/j.jns.2013.05.023 DOI: https://doi.org/10.1016/j.jns.2013.05.023

Larson RD. Psychometric properties of the modified fatigue impact scale. Int J MS Care 2013; 15: 15-20.

https://doi.org/10.7224/1537-2073.2012-019 DOI: https://doi.org/10.7224/1537-2073.2012-019

Baumann C, Erpelding M-L, Régat S, Collin J-F, Briançon S. The WHOQOL-BREF questionnaire: French adult population norms for the physical health, psychological health and social relationship dimensions. Rev Epidemiol Sante Publique 2010; 58: 33-39.

https://doi.org/10.1016/j.respe.2009.10.009 DOI: https://doi.org/10.1016/j.respe.2009.10.009

Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 2020; 41: 2657-2669.

https://doi.org/10.1007/s10072-020-04575-3 DOI: https://doi.org/10.1007/s10072-020-04575-3

Miners S, Kehoe PG, Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res Ther 2020; 12(1): 170.

https://doi.org/10.1186/s13195-020-00744-w DOI: https://doi.org/10.1186/s13195-020-00744-w

McMorris T, Hale BJ, Barwood M, Costello J, Corbett J. Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis. Neurosci Biobehav Rev 2017; 74: 225-232.

https://doi.org/10.1016/j.neubiorev.2017.01.019 DOI: https://doi.org/10.1016/j.neubiorev.2017.01.019

Adingupu DD, Soroush A, Hansen A, Twomey R, Dunn JF. Brain hypoxia, neurocognitive impairment, and quality of life in people post-COVID-19. J Neurol 2023; 270: 3303-3314.

https://doi.org/10.1007/s00415-023-11767-2 DOI: https://doi.org/10.1007/s00415-023-11767-2

Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022; 604: 697-707.

https://doi.org/10.1038/s41586-022-04569-5 DOI: https://doi.org/10.1038/s41586-022-04569-5

Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging 2021; 48: 2823-2833.

https://doi.org/10.1007/s00259-021-05215-4 DOI: https://doi.org/10.1007/s00259-021-05215-4

Mattioli F, Stampatori C, Righetti F, Sala E, Tomasi C, De Palma G. Neurological and cognitive sequelae of Covid-19: a four month follow-up. J Neurol 2021; 268: 4422-4428.

https://doi.org/10.1007/s00415-021-10579-6 DOI: https://doi.org/10.1007/s00415-021-10579-6

Dondaine T, Ruthmann F, Vuotto F, Carton L, Gelé P, Faure K, et al. Long-term cognitive impairments following COVID-19: a possible impact of hypoxia. J Neurol 2022; 269: 3982-3989.

https://doi.org/10.1007/s00415-022-11077-z DOI: https://doi.org/10.1007/s00415-022-11077-z

García-Sánchez C, Calabria M, Grunden N, Pons C, Arroyo JA, Gómez-Anson B, et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav 2022; 12: e2508.

https://doi.org/10.1002/brb3.2508 DOI: https://doi.org/10.1002/brb3.2508

Ollila H, Pihlaja R, Koskinen S, Tuulio-Henriksson A, Salmela V, Tiainen M, et al. Long-term cognitive functioning is impaired in ICU-treated COVID-19 patients: a comprehensive controlled neuropsychological study. Crit Care Lond Engl 2022; 26: 223.

https://doi.org/10.1186/s13054-022-04092-z DOI: https://doi.org/10.1186/s13054-022-04092-z

Liu Y-H, Chen Y, Wang Q-H, Wang L-R, Jiang L, Yang Y, et al. One-year trajectory of cognitive changes in older survivors of Covid-19 in Wuhan, China: a longitudinal cohort study. JAMA Neurol 2022; 79: 509-517.

https://doi.org/10.1001/jamaneurol.2022.0461 DOI: https://doi.org/10.1001/jamaneurol.2022.0461

Méndez R, Balanzá-Martínez V, Luperdi SC, Estrada I, Latorre A, González-Jiménez P, et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J Intern Med 2021; 290: 621-631.

https://doi.org/10.1111/joim.13262 DOI: https://doi.org/10.1111/joim.13262

van den Borst B, Peters JB, Brink M, Schoon Y, Bleeker-Rovers CP, Schers H, et al. Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID-19). Clin Infect Dis Off Publ Infect Dis Soc Am 2021; 73: e1089-1098.

https://doi.org/10.1093/cid/ciaa1750 DOI: https://doi.org/10.1093/cid/ciaa1750

Braga LW, Oliveira SB, Moreira AS, Pereira ME, Carneiro VS, Serio AS, et al. Neuropsychological manifestations of long COVID in hospitalized and non-hospitalized Brazilian Patients. NeuroRehabilitation 2022; 50: 391-400.

https://doi.org/10.3233/NRE-228020 DOI: https://doi.org/10.3233/NRE-228020

Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med 2021; 9: 1275-1287.

https://doi.org/10.1016/S2213-2600(21)00383-0 DOI: https://doi.org/10.1016/S2213-2600(21)00383-0

Woo MS, Malsy J, Pöttgen J, Seddiq Zai S, Ufer F, Hadjilaou A, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun 2020; 2: fcaa205.

https://doi.org/10.1093/braincomms/fcaa205 DOI: https://doi.org/10.1093/braincomms/fcaa205

Miskowiak KW, Johnsen S, Sattler SM, Nielsen S, Kunalan K, Rungby J, et al. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2021; 46: 39-48.

https://doi.org/10.1016/j.euroneuro.2021.03.019 DOI: https://doi.org/10.1016/j.euroneuro.2021.03.019

Cecchetti G, Agosta F, Canu E, Basaia S, Barbieri A, Cardamone R, et al. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. J Neurol 2022; 269: 3400-3012.

https://doi.org/10.1007/s00415-022-11047-5 DOI: https://doi.org/10.1007/s00415-022-11047-5

Rank A, Tzortzini A, Kling E, Schmid C, Claus R, Löll E, et al. One year after mild COVID-19: The majority of patients maintain specific immunity, but one in four still suffer from long-term symptoms. J Clin Med 2021; 10: 3305.

https://doi.org/10.3390/jcm10153305 DOI: https://doi.org/10.3390/jcm10153305

de Melo GD, Perraud V, Alvarez F, Vieites-Prado A, Kim S, Kergoat L, et al. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun 2023; 14: 4485.

https://doi.org/10.1038/s41467-023-40228-7 DOI: https://doi.org/10.1038/s41467-023-40228-7

Aiello EN, Fiabane E, Manera MR, Radici A, Grossi F, Ottonello M, et al. Screening for cognitive sequelae of SARS-CoV-2 infection: a comparison between the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). Neurol Sci 2022; 43: 81-84.

https://doi.org/10.1007/s10072-021-05630-3 DOI: https://doi.org/10.1007/s10072-021-05630-3

Pinto TCC, Machado L, Bulgacov TM, Rodrigues-Júnior AL, Costa MLG, Ximenes RCC, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer's Disease (AD) in the elderly? Int Psychogeriatr 2019; 31: 491-504.

https://doi.org/10.1017/S1041610218001370 DOI: https://doi.org/10.1017/S1041610218001370

Lees RA, Hendry BA K, Broomfield N, Stott D, Larner AJ, Quinn TJ. Cognitive assessment in stroke: feasibility and test properties using differing approaches to scoring of incomplete items. Int J Geriatr Psychiatry 2017; 32: 1072-1078.

https://doi.org/10.1002/gps.4568 DOI: https://doi.org/10.1002/gps.4568

Olazarán J, Hoyos-Alonso MC, del Ser T, Garrido Barral A, Conde-Sala JL, Bermejo-Pareja F, et al. Practical application of brief cognitive tests. Neurol Barc Spain 2016; 31: 183-194. DOI: https://doi.org/10.1016/j.nrleng.2015.07.005

https://doi.org/10.1016/j.nrl.2015.07.009 DOI: https://doi.org/10.1016/j.nrl.2015.07.009

Voruz P, Cionca A, Jacot de Alcântara I, Nuber-Champier A, Allali G, Benzakour L, et al. Functional connectivity underlying cognitive and psychiatric symptoms in post-COVID-19 syndrome: is anosognosia a key determinant? Brain Commun 2022; 4: fcac057.

https://doi.org/10.1093/braincomms/fcac057 DOI: https://doi.org/10.1093/braincomms/fcac057

Amalakanti S, Arepalli KVR, Jillella JP. Cognitive assessment in asymptomatic COVID-19 subjects. Virusdisease 2021; 32: 146-149.

https://doi.org/10.1007/s13337-021-00663-w DOI: https://doi.org/10.1007/s13337-021-00663-w

Miskowiak KW, Fugledalen L, Jespersen AE, Sattler SM, Podlekareva D, Rungby J, et al. Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: pattern, severity, and functional implications. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 2022; 59: 82-92.

https://doi.org/10.1016/j.euroneuro.2022.04.004 DOI: https://doi.org/10.1016/j.euroneuro.2022.04.004

Delgado-Alonso C, Valles-Salgado M, Delgado-Álvarez A, Yus M, Gómez-Ruiz N, Jorquera M, et al. Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study. J Psychiatr Res 2022; 150: 40-46.

https://doi.org/10.1016/j.jpsychires.2022.03.033 DOI: https://doi.org/10.1016/j.jpsychires.2022.03.033

Ortelli P, Ferrazzoli D, Sebastianelli L, Engl M, Romanello R, Nardone R, et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J Neurol Sci 2020; 420: 117271.

https://doi.org/10.1016/j.jns.2020.117271 DOI: https://doi.org/10.1016/j.jns.2020.117271

Stavem K, Einvik G, Tholin B, Ghanima W, Hessen E, Lundqvist C. Cognitive function in non-hospitalized patients 8-13 months after acute COVID-19 infection: a cohort study in Norway. PloS One 2022; 17: e0273352.

https://doi.org/10.1371/journal.pone.0273352 DOI: https://doi.org/10.1371/journal.pone.0273352

Del Brutto OH, Wu S, Mera RM, Costa AF, Recalde BY, Issa NP. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: a longitudinal prospective study nested to a population cohort. Eur J Neurol 2021; 28: 3245-3253.

https://doi.org/10.1111/ene.14775 DOI: https://doi.org/10.1111/ene.14775

Biagianti B, Di Liberto A, Nicolò Edoardo A, Lisi I, Nobilia L, de Ferrabonc GD, et al. Cognitive assessment in SARS-CoV-2 patients: a systematic review. Front Aging Neurosci 2022; 14: 909661.

https://doi.org/10.3389/fnagi.2022.909661 DOI: https://doi.org/10.3389/fnagi.2022.909661

Additional Files

Published

2023-11-16

How to Cite

Rapin, A., Calmus, A., Pradeau, C., Taiar, R., Belassian, G., Godefroy, O., Carazo-Mendez, S., & Boyer, F. C. (2023). Effect of oxygen therapy duration on cognitive impairment 12 months after hospitalization for SARS-COV-2 infection. Journal of Rehabilitation Medicine, 55, jrm12609. https://doi.org/10.2340/jrm.v55.12609

Issue

Section

Original Report

Categories