Efficacy of focused shockwave therapy in patients with moderate-to-severe carpal tunnel syndrome: a preliminary study

Authors

  • Pimpisa Vongvachvasin Department of Rehabilitation Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand https://orcid.org/0000-0001-7303-7611
  • Thitiporn Phakdepiboon Department of Rehabilitation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
  • Waree Chira-Adisai Department of Rehabilitation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand https://orcid.org/0000-0003-4313-9064
  • Punpetch Siriratna Department of Rehabilitation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand https://orcid.org/0000-0003-1765-7124

DOI:

https://doi.org/10.2340/jrm.v56.13411

Keywords:

Carpal tunnel syndrome, Extracorporeal shockwave therapy, Symptoms, Function, Electrodiagnosis, Nerve conduction

Abstract

Objective: To evaluate the efficacy of focused extracorporeal shockwave therapy for symptoms and function in patients with moderate-to-severe carpal tunnel syndrome.

Design: A single-blind randomized controlled trial.

Subjects: Twenty-four outpatients with moderate-to-severe carpal tunnel syndrome.

Methods: Patients were randomly allocated into 2 groups: a focused extracorporeal shockwave therapy group and a control group. The focused extracorporeal shockwave therapy group received conservative treatment in addition to focused extracorporeal shockwave therapy with an energy flux density ranging from 0.01 to 0.15 mJ/mm2, a frequency of 4–5 Hz, and 1500 pulses per session once a week for a total of 3 sessions. The control group received only conservative treatment, which comprised gliding exercises for carpal tunnel syndrome, a night wrist splint, and lifestyle modification. The Thai version of the Boston Carpal Tunnel Questionnaire (T-BCTQ), a nerve conduction study, and ultrasonography of the median nerve cross-sectional area were performed before treatment and at 3 and 6 weeks after baseline.

Results: The T-BCTQ symptom and function scores had significantly decreased in both groups, favouring focused extracorporeal shockwave therapy at all time-points. In addition, distal sensory and motor latency were significantly different between the groups at 3 weeks from baseline.

Conclusion: Focused extracorporeal shockwave therapy plus conservative treatment effectively provided short-term improvement in symptoms, hand function, and nerve conduction in patients with moderate-to-severe carpal tunnel syndrome compared with conservative treatment alone.

Downloads

Download data is not yet available.

References

Tadjerbashi K, Åkesson A, Atroshi I. Incidence of referred carpal tunnel syndrome and carpal tunnel release surgery in the general population: increase over time and regional variations. J Orthop Surg (Hong Kong) 2019; 27: 2309499019825572.

https://doi.org/10.1177/2309499019825572 DOI: https://doi.org/10.1177/2309499019825572

Becker J, Nora DB, Gomes I, Stringari FF, Seitensus R, Panosso JS, et al. An evaluation of gender, obesity, age and diabetes mellitus as risk factors for carpal tunnel syndrome. Clin Neurophysiol 2002; 113: 1429–1434.

https://doi.org/10.1016/s1388-2457(02)00201-8 DOI: https://doi.org/10.1016/S1388-2457(02)00201-8

Genova A, Dix O, Saefan A, Thakur M, Hassan A. Carpal tunnel syndrome: a review of literature. Cureus 2020; 12: e7333.

https://doi.org/10.7759/cureus.7333 DOI: https://doi.org/10.7759/cureus.7333

Sun PO, Walbeehm ET, Selles RW, Jansen MC, Slijper HP, Ulrich DJO, et al. Influence of illness perceptions, psychological distress and pain catastrophizing on self-reported symptom severity and functional status in patients with carpal tunnel syndrome. J Psychosom Res 2019; 126: 109820.

https://doi.org/10.1016/j.jpsychores.2019.109820 DOI: https://doi.org/10.1016/j.jpsychores.2019.109820

Pourmokhtari M, Mazrooyi M, Vosoughi AR. Conservative or surgical treatment of carpal tunnel syndrome based on the severity and patient risk factors. Musculoskelet Surg 2021; 105: 315–319.

https://doi.org/10.1007/s12306-020-00663-x DOI: https://doi.org/10.1007/s12306-020-00663-x

Wipperman J, Goerl K. Carpal tunnel syndrome: diagnosis and management. Am Fam Physician 2016; 94: 993–999.

Urits I, Gress K, Charipova K, Orhurhu V, Kaye AD, Viswanath O. Recent advances in the understanding and management of carpal tunnel syndrome: a comprehensive review. Curr Pain Headache Rep 2019; 23: 70.

https://doi.org/10.1007/s11916-019-0811-z DOI: https://doi.org/10.1007/s11916-019-0811-z

Karjalanen T, Raatikainen S, Jaatinen K, Lusa V. Update on efficacy of conservative treatments for carpal tunnel syndrome. J Clin Med 2022; 11.

https://doi.org/10.3390/jcm11040950 DOI: https://doi.org/10.3390/jcm11040950

Reilly JM, Bluman E, Tenforde AS. Effect of shockwave treatment for management of upper and lower extremity musculoskeletal conditions: a narrative review. Pm r 2018; 10: 1385–1403.

https://doi.org/10.1016/j.pmrj.2018.05.007 DOI: https://doi.org/10.1016/j.pmrj.2018.05.007

Tenforde AS, Borgstrom HE, DeLuca S, McCormack M, Singh M, Hoo JS, et al. Best practices for extracorporeal shockwave therapy in musculoskeletal medicine: Clinical application and training consideration. Pm r 2022; 14: 611–619.

https://doi.org/10.1002/pmrj.12790 DOI: https://doi.org/10.1002/pmrj.12790

Saggini R, Di Stefano A, Saggini A, Bellomo RG. CLINICAL application of shock wave therapy in musculoskeletal disorders: part i. J Biol Regul Homeost Agents 2015; 29: 533–545.

https://doi.org/10.2217/iim.12.25

Saggini R, Di Stefano A, Saggini A, Bellomo RG. Clinical application of shock wave therapy in musculoskeletal disorders: part II related to myofascial and nerve apparatus. J Biol Regul Homeost Agents 2015; 29: 771–785.

Moya D, Ramón S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018; 100: 251–263.

https://doi.org/10.2106/jbjs.17.00661 DOI: https://doi.org/10.2106/JBJS.17.00661

Mariotto S, de Prati AC, Cavalieri E, Amelio E, Marlinghaus E, Suzuki H. Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Curr Med Chem 2009; 16: 2366–2372.

https://doi.org/10.2174/092986709788682119 DOI: https://doi.org/10.2174/092986709788682119

Ciampa AR, de Prati AC, Amelio E, Cavalieri E, Persichini T, Colasanti M, et al. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett 2005; 579: 6839–6845.

https://doi.org/10.1016/j.febslet.2005.11.023 DOI: https://doi.org/10.1016/j.febslet.2005.11.023

Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana J. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma 2020; 11: S309–s318.

https://doi.org/10.1016/j.jcot.2020.02.004 DOI: https://doi.org/10.1016/j.jcot.2020.02.004

Seok H, Kim SH. The effectiveness of extracorporeal shock wave therapy vs. local steroid injection for management of carpal tunnel syndrome: a randomized controlled trial. Am J Phys Med Rehabil 2013; 92: 327–334.

https://doi.org/10.1097/PHM.0b013e31826edc7b DOI: https://doi.org/10.1097/PHM.0b013e31826edc7b

Notarnicola A, Maccagnano G, Tafuri S, Fiore A, Pesce V, Moretti B. Comparison of shock wave therapy and nutraceutical composed of Echinacea angustifolia, alpha lipoic acid, conjugated linoleic acid and quercetin (perinerv) in patients with carpal tunnel syndrome. Int J Immunopathol Pharmacol 2015; 28: 256–262.

https://doi.org/10.1177/0394632015584501 DOI: https://doi.org/10.1177/0394632015584501

Paoloni M, Tavernese E, Cacchio A, D’Orazi V, Ioppolo F, Fini M, et al. Extracorporeal shock wave therapy and ultrasound therapy improve pain and function in patients with carpal tunnel syndrome. A randomized controlled trial. Eur J Phys Rehabil Med 2015; 51: 521–528.

Gesslbauer C, Mickel M, Schuhfried O, Huber D, Keilani M, Crevenna R. Effectiveness of focused extracorporeal shock wave therapy in the treatment of carpal tunnel syndrome: a randomized, placebo-controlled pilot study. Wien Klin Wochenschr 2021; 133: 568–577.

https://doi.org/10.1007/s00508-020-01785-9 DOI: https://doi.org/10.1007/s00508-020-01785-9

Hausner T, Pajer K, Halat G, Hopf R, Schmidhammer R, Redl H, et al. Improved rate of peripheral nerve regeneration induced by extracorporeal shock wave treatment in the rat. Exp Neurol 2012; 236: 363–370.

https://doi.org/10.1016/j.expneurol.2012.04.019 DOI: https://doi.org/10.1016/j.expneurol.2012.04.019

Vahdatpour B, Kiyani A, Dehghan F. Effect of extracorporeal shock wave therapy on the treatment of patients with carpal tunnel syndrome. Adv Biomed Res 2016; 5: 120.

https://doi.org/10.4103/2277-9175.186983 DOI: https://doi.org/10.4103/2277-9175.186983

Chen KT, Chen YP, Kuo YJ, Chiang MH. Extracorporeal shock wave therapy provides limited therapeutic effects on carpal tunnel syndrome: a systematic review and meta-analysis. Medicina (Kaunas) 2022; 58: 677.

https://doi.org/10.3390/medicina58050677. DOI: https://doi.org/10.3390/medicina58050677

Preston DC. Distal median neuropathies. Neurol Clin 1999; 17: 407–424, v.

https://doi.org/10.1016/s0733-8619(05)70145-6 DOI: https://doi.org/10.1016/S0733-8619(05)70145-6

Werner RA, Andary M. Electrodiagnostic evaluation of carpal tunnel syndrome. Muscle Nerve 2011; 44: 597–607.

https://doi.org/10.1002/mus.22208 DOI: https://doi.org/10.1002/mus.22208

Hernández-Secorún M, Montaña-Cortés R, Hidalgo-García C, Rodríguez-Sanz J, Corral-de-Toro J, Monti-Ballano S, et al. Effectiveness of conservative treatment according to severity and systemic disease in carpal tunnel syndrome: a systematic review. Int J Environ Res Public Health 2021; 18: 2365.

https://doi.org/10.3390/ijerph18052365 DOI: https://doi.org/10.3390/ijerph18052365

Levine DW, Simmons BP, Koris MJ, Daltroy LH, Hohl GG, Fossel AH, et al. A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. J Bone Joint Surg Am 1993; 75: 1585–1592.

https://doi.org/10.2106/00004623-199311000-00002 DOI: https://doi.org/10.2106/00004623-199311000-00002

Upatham S, Kumnerddee W. Reliability of Thai version Boston questionnaire. J Med Assoc Thai 2008; 91: 1250–1256.

Mhoon JT, Juel VC, Hobson-Webb LD. Median nerve ultrasound as a screening tool in carpal tunnel syndrome: correlation of cross-sectional area measures with electrodiagnostic abnormality. Muscle Nerve 2012; 46: 871–878.

https://doi.org/10.1002/mus.23426 DOI: https://doi.org/10.1002/mus.23426

Raissi GR, Ghazaei F, Forogh B, Madani SP, Daghaghzadeh A, Ahadi T. The Effectiveness of radial extracorporeal shock waves for treatment of carpal tunnel syndrome: a randomized clinical trial. Ultrasound Med Biol 2017; 43: 453–460.

https://doi.org/10.1016/j.ultrasmedbio.2016.08.022 DOI: https://doi.org/10.1016/j.ultrasmedbio.2016.08.022

Xu D, Ma W, Jiang W, Hu X, Jiang F, Mao C, et al. A randomized controlled trial: comparing extracorporeal shock wave therapy versus local corticosteroid injection for the treatment of carpal tunnel syndrome. Int Orthop 2020; 44: 141–146.

https://doi.org/10.1007/s00264-019-04432-9 DOI: https://doi.org/10.1007/s00264-019-04432-9

Peer S, Gruber H, Loizides A. Sonography of carpal tunnel syndrome: why, when and how. Imaging in Medicine 2012; 4: 287. DOI: https://doi.org/10.2217/iim.12.25

Ke MJ, Chen LC, Chou YC, Li TY, Chu HY, Tsai CK, et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial. Sci Rep 2016; 6: 38344.

https://doi.org/10.1038/srep38344 DOI: https://doi.org/10.1038/srep38344

Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H. Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Autonomic Neurosci 2003; 107: 81–84.

https://doi.org/10.1016/S1566-0702(03)00134-6 DOI: https://doi.org/10.1016/S1566-0702(03)00134-6

Hausdorf J, Lemmens M, Heck K, Grolms N, Korr H, Kertschanska S, et al. Selective loss of unmyelinated nerve fibers after extracorporeal shockwave application to the musculoskeletal system. Neuroscience 2008; 155: 138–144.

https://doi.org/10.1016/j.neuroscience.2008.03.062 DOI: https://doi.org/10.1016/j.neuroscience.2008.03.062

Hausdorf J, Lemmens MA, Kaplan S, Marangoz C, Milz S, Odaci E, et al. Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain research 2008; 1207: 96–101.

https://doi.org/10.1016/j.brainres.2008.02.013 DOI: https://doi.org/10.1016/j.brainres.2008.02.013

García-Muntión A, Godefroy L, Robert H, Muñoz-García D, Calvo-Lobo C, López-de-Uralde-Villanueva I. Study of the mechanisms of action of the hypoalgesic effect of pressure under shock waves application: a randomised controlled trial. Complement Ther Med 2019; 42: 332–339.

https://doi.org/10.1016/j.ctim.2018.12.012 DOI: https://doi.org/10.1016/j.ctim.2018.12.012

Yahata K, Kanno H, Ozawa H, Yamaya S, Tateda S, Ito K, et al. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J Neurosurg Spine 2016; 25: 745–755.

https://doi.org/10.3171/2016.4.SPINE15923 DOI: https://doi.org/10.3171/2016.4.SPINE15923

Additional Files

Published

2024-02-08

How to Cite

Vongvachvasin, P., Phakdepiboon, T. ., Chira-Adisai, W., & Siriratna, P. (2024). Efficacy of focused shockwave therapy in patients with moderate-to-severe carpal tunnel syndrome: a preliminary study. Journal of Rehabilitation Medicine, 56, jrm13411. https://doi.org/10.2340/jrm.v56.13411

Issue

Section

Original Report

Categories