Delayed versus Accelerated Weight-bearing Rehabilitation Protocol Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis

Authors

  • Zheyuan Fan
  • Jingtong Yan
  • Zhongsheng Zhou
  • Yu Gao
  • Jinshuo Tang
  • Yuhuan Li
  • Zhuo Zhang
  • Modi Yang
  • Jiayin Lv Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China

DOI:

https://doi.org/10.2340/jrm.v53.1438

Keywords:

anterior cruciate ligament reconstruction, rehabilitation, weight-bearing, knee laxity

Abstract

Objective: To compare accelerated and delayed weight-bearing rehabilitation of anterior cruciate ligament reconstruction regarding clinical outcome measures of knee function (International Knee Documentation Committee Subjective Knee Form (IKDC), Lysholm Knee Scoring Scale, Tegner Activity Scale, and Knee Injury and Osteoarthritis Outcome Score (KOOS)), knee laxity, range of movement,
quadriceps, and bone tunnel enlargement.
Design: Systematic review and meta-analysis.
Methods: Systematic searches of Embase, MEDLINE, CINAHL, and the Cochrane Library databases, from inception to February 2021, for studies comparing delayed or accelerated weight-bearing rehabilitation protocol after anterior cruciate ligament reconstruction
in adult patients.
Results: Nine studies met the eligibility criteria. A meta-analysis revealed a higher risk of knee laxity in the accelerated weight-bearing group. Accelerated weight-bearing may be related to higher IKDC scores, while there was no statistical difference for Lysholm, Tegner, and KOOS scores at a follow-up within 2 years. Four of 5 studies reported no statistical difference for quadriceps strength and range of movement scores, while 2 studies reported bone tunnel enlargement in the accelerated weight-bearing group.
Conclusion: This systematic review confirmed that accelerated weight-bearing caused more serious knee laxity and bone tunnel widening than delayed weight-bearing after anterior cruciate ligament reconstruction. We therefore recommend that clinicians should select postoperative rehabilitation programmes with caution.

LAY ABSTRACT
Anterior cruciate ligament rupture is one of the most common sports injuries. This systematic review confirmed that accelerated weight-bearing rehabilitation resulted in more serious knee laxity and bone tunnel widening than delayed weight-bearing rehabilitation after ACLR. We therefore recommend that clinicians should select postoperative rehabilitation programmes with caution.

Downloads

Download data is not yet available.

References

Tajima T, Yamaguchi N, Nagasawa M, Morita Y, Nakamura Y, Chosa E. Early weight-bearing after anterior cruciate ligament reconstruction with hamstring grafts induce femoral bone tunnel enlargement: a prospective clinical and radiographic study. BMC Musculoskelet Disord 2019; 20: 274.

https://doi.org/10.1186/s12891-019-2653-6 DOI: https://doi.org/10.1186/s12891-019-2653-6

MARS Group. Rehabilitation predictors of clinical outcome following revision ACL reconstruction in the MARS cohort. J Bone Joint Surg Am 2019; 101: 779-786.

https://doi.org/10.2106/JBJS.18.00397 DOI: https://doi.org/10.2106/JBJS.18.00397

Rizer M, Foremny GB, Rush A, 3rd, Singer AD, Baraga M, Kaplan LD, et al. Anterior cruciate ligament reconstruction tunnel size: causes of tunnel enlargement and implications for single versus two-stage revision reconstruction. Skeletal Radiol 2017; 46: 161-169.

https://doi.org/10.1007/s00256-016-2535-z DOI: https://doi.org/10.1007/s00256-016-2535-z

Harput G, Howard JS, Mattacola C. Comparison of muscle activation levels between healthy individuals and persons who have undergone anterior cruciate ligament reconstruction during different phases of weight-bearing exercises. J Orthop Sports Phys Ther 2016; 46: 984-992.

https://doi.org/10.2519/jospt.2016.5896 DOI: https://doi.org/10.2519/jospt.2016.5896

Chmielewski TL, Wilk KE, Snyder-Mackler L. Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture 2002; 16: 87-95.

https://doi.org/10.1016/S0966-6362(01)00202-8 DOI: https://doi.org/10.1016/S0966-6362(01)00202-8

Sritharan P, Schache AG, Culvenor AG, Perraton LG, Bryant AL, Crossley KM. Between-limb differences in patellofemoral joint forces during running at 12 to 24 months after unilateral anterior cruciate ligament reconstruction. Am J Sports Med 2020; 48: 1711-1719.

https://doi.org/10.1177/0363546520914628 DOI: https://doi.org/10.1177/0363546520914628

Lin PE, Sigward SM. Influence of hamstrings on knee moments during loading response of gait in individuals following ACL reconstruction. J Orthop Res 2020; 38: 378-386.

https://doi.org/10.1002/jor.24465 DOI: https://doi.org/10.1002/jor.24465

Tyler TF, McHugh MP, Gleim GW, Nicholas SJ. The effect of immediate weightbearing after anterior cruciate ligament reconstruction. Clin Orthop Relat Res 1998: 141-148.

https://doi.org/10.1097/00003086-199812000-00019 DOI: https://doi.org/10.1097/00003086-199812000-00019

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-1012.

https://doi.org/10.1016/j.jclinepi.2009.06.005 DOI: https://doi.org/10.1016/j.jclinepi.2009.06.005

Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.

https://doi.org/10.1136/bmj.d5928 DOI: https://doi.org/10.1136/bmj.d5928

Di Miceli R, Marambio CB, Zati A, Monesi R, Benedetti MG. Do knee bracing and delayed weight bearing affect mid-term functional outcome after anterior cruciate ligament reconstruction? Joints 2017; 5: 202-206.

https://doi.org/10.1055/s-0037-1606617 DOI: https://doi.org/10.1055/s-0037-1606617

Luo Y, Shen W, Jiang Z, Sha J. Treadmill training with partial body-weight support after anterior cruciate ligament reconstruction: a randomized controlled trial. J Phys Ther Sci 2016; 28: 3325-3329.

https://doi.org/10.1589/jpts.28.3325 DOI: https://doi.org/10.1589/jpts.28.3325

Zhu W, Wang D, Han Y, Zhang N, Zeng Y. Anterior cruciate ligament (ACL) autograft reconstruction with hamstring tendons: clinical research among three rehabilitation procedures. Eur J Orthop Surg Traumatol 2013; 23: 939-943.

https://doi.org/10.1007/s00590-012-1106-9 DOI: https://doi.org/10.1007/s00590-012-1106-9

Christensen JC, Goldfine LR, West HS. The effects of early aggressive rehabilitation on outcomes after anterior cruciate ligament reconstruction using autologous hamstring tendon: a randomized clinical trial. J Sport Rehabil 2013; 22: 191-201.

https://doi.org/10.1123/jsr.22.3.191 DOI: https://doi.org/10.1123/jsr.22.3.191

Beynnon BD, Johnson RJ, Naud S, Fleming BC, Abate JA, Brattbakk B, et al. Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis. Am J Sports Med 2011; 39: 2536-2548.

https://doi.org/10.1177/0363546511422349 DOI: https://doi.org/10.1177/0363546511422349

Beynnon BD, Uh BS, Johnson RJ, Abate JA, Nichols CE, Fleming BC, et al. Rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind comparison of programs administered over 2 different time intervals. Am J Sports Med 2005; 33: 347-359.

https://doi.org/10.1177/0363546504268406 DOI: https://doi.org/10.1177/0363546504268406

Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports 2002; 12: 73-80.

https://doi.org/10.1034/j.1600-0838.2002.120203.x DOI: https://doi.org/10.1034/j.1600-0838.2002.120203.x

Cristiani R, Mikkelsen C, Wange P, Olsson D, Stålman A, Engström B. Autograft type affects muscle strength and hop performance after ACL reconstruction. A randomised controlled trial comparing patellar tendon and hamstring tendon autografts with standard or accelerated rehabilitation. Knee Surg Sports Traumatol Arthrosc 2020; 29: 3025-3036.

https://doi.org/10.1007/s00167-020-06334-5 DOI: https://doi.org/10.1007/s00167-020-06334-5

Poehling-Monaghan KL, Salem H, Ross KE, Secrist E, Ciccotti MC, Tjoumakaris F, et al. Long-term outcomes in anterior cruciate ligament reconstruction: a systematic review of patellar tendon versus hamstring autografts. Orthop J Sports Med 2017; 5: 2325967117709735.

https://doi.org/10.1177/2325967117709735 DOI: https://doi.org/10.1177/2325967117709735

Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ. Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 2017; 475: 2459-2468.

https://doi.org/10.1007/s11999-017-5278-9 DOI: https://doi.org/10.1007/s11999-017-5278-9

Hanypsiak BT, Spindler KP, Rothrock CR, Calabrese GJ, Richmond B, Herrenbruck TM, et al. Twelve-year follow-up on anterior cruciate ligament reconstruction: long-term outcomes of prospectively studied osseous and articular injuries. Am J Sports Med 2008; 36: 671-677.

https://doi.org/10.1177/0363546508315468 DOI: https://doi.org/10.1177/0363546508315468

von Essen C, McCallum S, Barenius B, Eriksson K. Acute reconstruction results in less sick-leave days and as such fewer indirect costs to the individual and society compared to delayed reconstruction for ACL injuries. Knee Surg Sports Traumatol Arthrosc 2020; 28: 2044-2052.

https://doi.org/10.1007/s00167-019-05397-3 DOI: https://doi.org/10.1007/s00167-019-05397-3

Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G, et al. Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cell Physiol Biochem 2017; 41: 875-889.

https://doi.org/10.1159/000460005 DOI: https://doi.org/10.1159/000460005

Hettrich CM, Gasinu S, Beamer BS, Stasiak M, Fox A, Birmingham P, et al. The effect of mechanical load on tendon-to-bone healing in a rat model. Am J Sports Med 2014; 42: 1233--1241.

https://doi.org/10.1177/0363546514526138 DOI: https://doi.org/10.1177/0363546514526138

Ma R, Schär M, Chen T, Sisto M, Nguyen J, Voigt C, et al. Effect of dynamic changes in anterior cruciate ligament in situ graft force on the biological healing response of the graft-tunnel interface. Am J Sports Med 2018; 46: 915-923.

https://doi.org/10.1177/0363546517745624 DOI: https://doi.org/10.1177/0363546517745624

Camp CL, Lebaschi A, Cong GT, Album Z, Carballo C, Deng XH, et al. Timing of postoperative mechanical loading affects healing following anterior cruciate ligament reconstruction: analysis in a murine model. J Bone Joint Surg Am 2017; 99: 1382-1391.

https://doi.org/10.2106/JBJS.17.00133 DOI: https://doi.org/10.2106/JBJS.17.00133

Thrush C, Porter TJ, Devitt BM. No evidence for the most appropriate postoperative rehabilitation protocol following anterior cruciate ligament reconstruction with concomitant articular cartilage lesions: a systematic review. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1065-1073.

https://doi.org/10.1007/s00167-018-4882-x DOI: https://doi.org/10.1007/s00167-018-4882-x

Janssen RP, du Mée AW, van Valkenburg J, Sala HA, Tseng CM. Anterior cruciate ligament reconstruction with 4-strand hamstring autograft and accelerated rehabilitation: a 10-year prospective study on clinical results, knee osteoarthritis and its predictors. Knee Surg Sports Traumatol Arthrosc 2013; 21: 1977-1988.

https://doi.org/10.1007/s00167-012-2234-9 DOI: https://doi.org/10.1007/s00167-012-2234-9

Budny J, Fox J, Rauh M, Fineberg M. Emerging trends in anterior cruciate ligament reconstruction. J Knee Surg 2017; 30: 63-69.

https://doi.org/10.1055/s-0036-1579788 DOI: https://doi.org/10.1055/s-0036-1579788

Kruse LM, Gray BL, Wright RW. Anterior cruciate ligament reconstruction rehabilitation in the pediatric population. Clin Sports Med 2011; 30: 817-824.

https://doi.org/10.1016/j.csm.2011.06.005 DOI: https://doi.org/10.1016/j.csm.2011.06.005

Wright RW, Haas AK, Anderson J, Calabrese G, Cavanaugh J, Hewett TE, et al. Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines. Sports Health 2015; 7: 239-243.

https://doi.org/10.1177/1941738113517855 DOI: https://doi.org/10.1177/1941738113517855

Forrester LA, Schweppe EA, Popkin CA. Variability in rehabilitation protocols following pediatric anterior cruciate ligament (ACL) reconstruction. Phys Sportsmed 2019; 47: 448-454.

https://doi.org/10.1080/00913847.2019.1622472 DOI: https://doi.org/10.1080/00913847.2019.1622472

Wright RW, Preston E, Fleming BC, Amendola A, Andrish JT, Bergfeld JA, et al. A systematic review of anterior cruciate ligament reconstruction rehabilitation: part I: continuous passive motion, early weight bearing, postoperative bracing, and home-based rehabilitation. J Knee Surg 2008; 21: 217-224.

https://doi.org/10.1055/s-0030-1247822 DOI: https://doi.org/10.1055/s-0030-1247822

Meyer EG, Haut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 2008; 41: 3377-3383.

https://doi.org/10.1016/j.jbiomech.2008.09.023 DOI: https://doi.org/10.1016/j.jbiomech.2008.09.023

van Melick N, van Cingel RE, Brooijmans F, Neeter C, van Tienen T, Hullegie W, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 2016; 50: 1506-1515.

https://doi.org/10.1136/bjsports-2015-095898 DOI: https://doi.org/10.1136/bjsports-2015-095898

Logerstedt DS, Scalzitti D, Risberg MA, Engebretsen L, Webster KE, Feller J, et al. Knee stability and movement coordination impairments: knee ligament sprain revision 2017. J Orthop Sports Phys Ther 2017; 47: A1-a47.

https://doi.org/10.2519/jospt.2017.0303 DOI: https://doi.org/10.2519/jospt.2017.0303

Kruse LM, Gray B, Wright RW. Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg Am 2012; 94: 1737-1748.

https://doi.org/10.2106/JBJS.K.01246 DOI: https://doi.org/10.2106/JBJS.K.01246

Vadalà A, Iorio R, De Carli A, Argento G, Di Sanzo V, Conteduca F, et al. The effect of accelerated, brace free, rehabilitation on bone tunnel enlargement after ACL reconstruction using hamstring tendons: a CT study. Knee Surg Sports Traumatol Arthrosc 2007; 15: 365-371.

https://doi.org/10.1007/s00167-006-0219-2 DOI: https://doi.org/10.1007/s00167-006-0219-2

Hoshino Y, Kuroda R, Nishizawa Y, Nakano N, Nagai K, Araki D, et al. Stress distribution is deviated around the aperture of the femoral tunnel in the anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1145-1151.

https://doi.org/10.1007/s00167-017-4543-5 DOI: https://doi.org/10.1007/s00167-017-4543-5

Taketomi S. Editorial commentary: tunel widening after anterior cruciate ligament reconstruction may increase laxity and complicate revision. Arthroscopy 2021; 37: 2564-2566.

https://doi.org/10.1016/j.arthro.2021.04.013 DOI: https://doi.org/10.1016/j.arthro.2021.04.013

Published

2022-02-14

How to Cite

Fan, Z., Yan, J., Zhou, Z., Gao, Y., Tang, J., Li, Y. ., Zhang, Z. ., Yang, M., & Lv, J. (2022). Delayed versus Accelerated Weight-bearing Rehabilitation Protocol Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Journal of Rehabilitation Medicine, 54, jrm00260. https://doi.org/10.2340/jrm.v53.1438