Functional outcomes following surgery for spastic hip adductor muscles in ambulatory and non-ambulatory adults
DOI:
https://doi.org/10.2340/jrm.v56.18356Keywords:
Denervation, Gait, Muscle Spasticity, Obturator nerve, NeurosurgeryAbstract
Objective: To evaluate functional outcomes of surgery of spastic hip adductor muscles (obturator neurotomy with or without adductor longus tenotomy) in ambulatory and non-ambulatory patients, using preoperatively defined personalized goals.
Design: Retrospective observational descriptive study.
Patients: Twenty-three patients with adductor spasticity who underwent obturator neurotomy between May 2016 and May 2021 at the Clinique des Cèdres, Cornebarrieu, France, were included.
Methods: Postoperative functional results were evaluated in accordance with the Goal Attainment Scaling method. Patients were considered “responders” if their score was ≥ 0. Secondary outcomes included spasticity, strength, hip range of motion and change in ambulatory capacity. When data were available, a comparison of pre- and postoperative 3-dimensional instrumented gait analysis was also performed.
Results: Among the 23 patients only 3 were non-walkers. Seventeen/22 patients achieved their main goal and 14/23 patients achieved all their goals. Results were broadly similar for both walking goals (inter-knee contact, inter-feet contact, fluidity, walking perimeter, toe drag) and non-walking goals (intimacy, transfer, pain, posture, dressing).
Conclusion: Surgery of spastic hip adductor muscles results in functional improvement in ambulation, hygiene, dressing and posture and can be offered to patients with troublesome adductor overactivity. The use of a motor nerve block is recommended to define relevant goals before the surgery.
Downloads
References
Gracies J-M, Bayle N, Vinti M, Alkandari S, Vu P, Loche CM, et al. Five-step clinical assessment in spastic paresis. Eur J Phys Rehabil Med 2010; 46: 411-421.
Yoshida T, Nakamoto T, Kamibayashi T. Ultrasound-guided obturator nerve block: a focused review on anatomy and updated techniques. Biomed Res Int 2017; 2017: 7023750.
https://doi.org/10.1155/2017/7023750 DOI: https://doi.org/10.1155/2017/7023750
Kapandji AI. La hanche. In:Anatomie fonctionnelle, vol. 2: Membre inférieur. 7th edn. Paris: Maloine; 2018, p. 6-54.
Perry J, Burnfield, JM. Gait analysis. Normal and pathological function. 2nd edn. Thorofare, NJ: SLACK Incorporated Publishing; 2010.
Takizawa M, Suzuki D, Ito H, Fujimiya M, Uchiyama E. The adductor part of the adductor magnus is innervated by both obturator and sciatic nerves. Clin Anat 2014; 27: 778-782.
https://doi.org/10.1002/ca.22274 DOI: https://doi.org/10.1002/ca.22274
Ward AB. A summary of spasticity management - a treatment algorithm. Eur J Neurol 2002; 9 Suppl 1: 48-61.
https://doi.org/10.1046/j.1468-1331.2002.0090s1048.x DOI: https://doi.org/10.1046/j.1468-1331.2002.0090s1048.x
Hyman N, Barnes M, Bhakta B, Cozens A, Bakheit M, Kreczy-Kleedorfer B, et al. Botulinum toxin (Dysport) treatment of hip adductor spasticity in multiple sclerosis: a prospective, randomised, double blind, placebo controlled, dose ranging study. J Neurol Neurosurg Psychiatry 2000; 68: 707-712.
https://doi.org/10.1136/jnnp.68.6.707 DOI: https://doi.org/10.1136/jnnp.68.6.707
van Lith BJH, den Boer J, van de Warrenburg BPC, Weerdesteyn V, Geurts AC. Functional effects of botulinum toxin type A in the hip adductors and subsequent stretching in patients with hereditary spastic paraplegia. J Rehabil Med 2019; 51: 434-441.
https://doi.org/10.2340/16501977-2556 DOI: https://doi.org/10.2340/16501977-2556
Cioncoloni D, Taddei S, Bielli S, Annunziata P, Mazzocchio R. Meaningful improvement in walking performance after Botulinum neurotoxin A (BoNT-A) in chronic spastic patients. NeuroRehabilitation 2014; 34: 185-192.
https://doi.org/10.3233/NRE-131021 DOI: https://doi.org/10.3233/NRE-131021
Yadav SL, Singh U, Dureja GP, Singh KK, Chaturvedi S. Phenol block in the management of spastic cerebral palsy. Indian J Pediatr 1994; 61: 249-255.
https://doi.org/10.1007/BF02752218 DOI: https://doi.org/10.1007/BF02752218
Ofluoglu D, Esquenazi A, Hirai B. Temporospatial parameters of gait after obturator neurolysis in patients with spasticity. Am J Phys Med Rehabil 2003; 82: 832-836.
https://doi.org/10.1097/01.PHM.0000091986.32078.CD DOI: https://doi.org/10.1097/01.PHM.0000091986.32078.CD
Viel EJ, Perennou D, Ripart J, Pélissier J, Eledjam JJ. Neurolytic blockade of the obturator nerve for intractable spasticity of adductor thigh muscles. Eur J Pain 2002; 6: 97-104.
https://doi.org/10.1053/eujp.2001.0269 DOI: https://doi.org/10.1053/eujp.2001.0269
Ghai A, Sangwan S, Hooda S, Garg N, Kundu Z, Gupta T. Evaluation of interadductor approach in neurolytic blockade of obturator nerve in spastic patients. Saudi J Anaesth 2013; 7: 420-426.
https://doi.org/10.4103/1658-354X.121074 DOI: https://doi.org/10.4103/1658-354X.121074
Deltombe T, Gilliaux M, Peret F, Leeuwerck M, Wautier D, Hanson P, et al. Effect of the neuro-orthopedic surgery for spastic equinovarus foot after stroke: a prospective longitudinal study based on a goal-centered approach. Eur J Phys Rehabil Med 2019; 54: 853-859.
https://doi.org/10.23736/S1973-9087.18.04993-6 DOI: https://doi.org/10.23736/S1973-9087.18.04993-6
Gross R, Robertson J, Leboeuf F, Hamel O, Brochard S, Perrouin-Verbe B. Neurotomy of the rectus femoris nerve: short-term effectiveness for spastic stiff knee gait: Clinical assessment and quantitative gait analysis. Gait Posture 2017; 52: 251-257.
https://doi.org/10.1016/j.gaitpost.2016.11.032 DOI: https://doi.org/10.1016/j.gaitpost.2016.11.032
Sindou MP, Simon F, Mertens P, Decq P. Selective peripheral neurotomy (SPN) for spasticity in childhood. Childs Nerv Syst 2007; 23: 957-970.
https://doi.org/10.1007/s00381-007-0399-1 DOI: https://doi.org/10.1007/s00381-007-0399-1
Lorenz F. Uber chirurgische Behandlung der angeborenen spastischen Gliedstare. Wien Klin Rdsch 1887; 21: 25-27.
Hagberg B, Hirsch C, Steen M. Resection of the obturator nerve in the treatment of adductor spasticity in cerebral palsy. Acta Orthop Scand 1964; 34: 258-270.
https://doi.org/10.3109/17453676408989322 DOI: https://doi.org/10.3109/17453676408989322
Wheeler ME, Weinstein SL. Adductor tenotomy-obturator neurectomy. J Pediatr Orthop 1984; 4: 48-51.
https://doi.org/10.1097/01241398-198401000-00011 DOI: https://doi.org/10.1097/01241398-198401000-00011
Haftek I. Clinical and electromyographic evaluation of obturator neurectomy in severe spasticity. Spinal Cord 1987; 25: 394-396.
https://doi.org/10.1038/sc.1987.69 DOI: https://doi.org/10.1038/sc.1987.69
Benn ML, Pizzari T, Rath L, Tucker K, Semciw AI. Adductor magnus: an EMG investigation into proximal and distal portions and direction specific action. Clin Anat 2018; 31: 535-543.
https://doi.org/10.1002/ca.23068 DOI: https://doi.org/10.1002/ca.23068
Park Y-B, Kim S, Kim S-W, Chang C, Cho S-H, Jang S. Microsurgical selective obturator neurotomy for spastic hip adduction. J Korean Neurosurg Soc 2007; 41.
Sitthinamsuwan B, Chanvanitkulchai K, Phonwijit L, Nunta-Aree S, Kumthornthip W, Ploypetch T. Improvement of sitting ability and ambulation status after selective peripheral neurotomy of the sciatic hamstring nerve together with obturator branches for severe spasticity of the lower extremities. Stereotact Funct Neurosurg 2012; 90: 335-343.
https://doi.org/10.1159/000338679 DOI: https://doi.org/10.1159/000338679
Liu H, Fan L, Li J, Dangol S, Talifu Z, Ma X, et al. Combined selective peripheral neurotomy in the treatment of spastic lower limbs of spinal cord injury patients. Acta Neurochir (Wien) 2022; 164: 2263-2269.
https://doi.org/10.1007/s00701-022-05265-z DOI: https://doi.org/10.1007/s00701-022-05265-z
Li F, Wu Y, Li X. Test-retest reliability and inter-rater reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in hemiplegic patients with stroke. Eur J Phys Rehabil Med 2014; 50: 9-15.
Cormier C, Sourisseau C, Montane E, Scandella M, Castel-Lacanal E, Boissezon XD, et al. Respective contributions of instrumented 3D Gait analysis data and tibial motor nerve block on presurgical spastic equinus foot assessment: a retrospective study of 40 adults. Front Neurol 2022; 13. [cited 2002 Jun 27] Available from: https://europepmc.org/articles/PMC9196860
https://doi.org/10.3389/fneur.2022.862644 DOI: https://doi.org/10.3389/fneur.2022.862644
Meseguer-Henarejos A-B, Sánchez-Meca J, López-Pina J-A, Carles-Hernández R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2018; 54: 576-590.
https://doi.org/10.23736/S1973-9087.17.04796-7 DOI: https://doi.org/10.23736/S1973-9087.17.04796-7
Brun V, Mousbeh Z, Jouet-Pastre B, Benaim C, Kunnert JE, Dhoms G, et al. Évaluation clinique de la marche de l'hémiplégique vasculaire : proposition d'une modification de la functional ambulation classification. Ann Readapt Med Phys 2000; 43: 14-20.
https://doi.org/10.1016/S0168-6054(00)87937-4 DOI: https://doi.org/10.1016/S0168-6054(00)87937-4
McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 2009; 29: 360-369.
https://doi.org/10.1016/j.gaitpost.2008.09.003 DOI: https://doi.org/10.1016/j.gaitpost.2008.09.003
Bard-pondarré R, Villepinte C, Roumenoff F, Lebrault H, Bonnyaud C, Pradeau C, et al. Goal attainment scaling in rehabilitation: an educational review providing a comprehensive didactical tool box for implementing goal attainment scaling. J Rehabil Med 2023; 55.
https://doi.org/10.2340/jrm.v55.6498 DOI: https://doi.org/10.2340/jrm.v55.6498
Deltombe T, Bleyenheuft C, Gustin T. Comparison between tibial nerve block with anaesthetics and neurotomy in hemiplegic adults with spastic equinovarus foot. Ann Phys Rehabil Med 2015; 58: 54-59.
https://doi.org/10.1016/j.rehab.2014.12.003 DOI: https://doi.org/10.1016/j.rehab.2014.12.003
Elovic EP, Esquenazi A, Alter KE, Lin JL, Alfaro A, Kaelin DL. Chemodenervation and nerve blocks in the diagnosis and management of spasticity and muscle overactivity. PM&R 2009; 1: 842-851.
https://doi.org/10.1016/j.pmrj.2009.08.001 DOI: https://doi.org/10.1016/j.pmrj.2009.08.001
Filipetti P, Decq P. Interest of anesthetic blocks for assessment of the spastic patient. A series of 815 motor blocks. Neurochirurgie 2003; 49: 226-238.
Denny-Brown D. The cerebral control of movement. Liverpool: The Liverpool University Press; 1966.
Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil 2014; 36: 1-9.
https://doi.org/10.3109/09638288.2013.775359 DOI: https://doi.org/10.3109/09638288.2013.775359
Lacôte M, Chevalier AM, Miranda A, Bleton JP. Évaluation clinique de la fonction musculaire, 5e edn. Paris: Maloine; 2005.
Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther 2010; 40: 82-94.
https://doi.org/10.2519/jospt.2010.3025 DOI: https://doi.org/10.2519/jospt.2010.3025
Arnold AS, Delp SL. Rotational moment arms of the medial hamstrings and adductors vary with femoral geometry and limb position: implications for the treatment of internally rotated gait. J Biomech 2001; 34: 437-447.
https://doi.org/10.1016/S0021-9290(00)00232-3 DOI: https://doi.org/10.1016/S0021-9290(00)00232-3
Arnold AS, Asakawa DJ, Delp SL. Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? Gait Posture 2000; 11: 181-190.
https://doi.org/10.1016/S0966-6362(00)00046-1 DOI: https://doi.org/10.1016/S0966-6362(00)00046-1
Ramakrishnan HK, Kadaba MP. On the estimation of joint kinematics during gait. J Biomech 1991; 24: 969-977.
https://doi.org/10.1016/0021-9290(91)90175-M DOI: https://doi.org/10.1016/0021-9290(91)90175-M
Schache AG, Baker R, Lamoreux LW. Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods. Gait Posture 2006; 24:100-109.
https://doi.org/10.1016/j.gaitpost.2005.08.002 DOI: https://doi.org/10.1016/j.gaitpost.2005.08.002
Chalard A, Amarantini D, Tisseyre J, Marque P, Tallet J, Gasq D. Spastic co-contraction, rather that spasticity, is associated with impaired active function in adults with acquired brain injury: a pilot study. J Rehabil Med 2019; 51: 307-311.
https://doi.org/10.2340/16501977-2528 DOI: https://doi.org/10.2340/16501977-2528
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Daphnée Brun, Olivier Hamel, Emmeline Montané, Marino Scandella, Evelyne Castel-Lacanal, Xavier de Boissezon, Philippe Marque, David Gasq, Camille Cormier
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.