Electromagnetic Induction for Treatment of Unspecific Back Pain: A Prospective Randomized Sham-Controlled Clinical Trial
DOI:
https://doi.org/10.2340/jrm.v55.3487Keywords:
Calmodulin, Microcirculation, Nitric oxide, Non-thermal pulsed electromagnetic fields, Signalling pathway, TherapyAbstract
Objective: To evaluate the effects of high-energy pulsed electromagnetic fields on unspecific back pain.
Methods: A prospective, randomized, sham-controlled clinical trial with repeated measurements was performed. The study included 5 visits (V0 to V4) with 3 interventions during V1, V2 and V3. Sixty-one patients aged between 18 and 80 years with unspecific back pain (acute inflammatory diseases and specific causes were reasons for exclusion) were included. The treatment group (n = 31) received 1–2 pulses/s, with an intensity of 50 mT, and an electric field strength of at least 20 V/m on 3 consecutive weekdays for 10 min each time. The control group (n = 30) received a comparable sham therapy. Pain intensity (visual analogue scale), local oxyhaemoglobin saturation, heart rate, blood pressure, and perfusion index were evaluated before (b) and after (a) V1 and V3 interventions. Change in visual analogue scale for V1 (ChangeV1a-b) and V3 (ChangeV3a-b), and ChangeData between V3a and V1b (ChangeV3a–V1b) for the remaining data were calculated (results were mean (standard deviation) (95% confidence interval; 95% CI)).
Results: Concerning the visual analogue scale: (i) compared with the control group, the treatment group had higher ChangeV1a–b (–1.25 (1.76) (95% CI –1.91 to –0.59) vs –2.69 (1.74) (95% CI –3.33 to –2.06), respectively), and comparable Change V3a–b (–0.86 (1.34) (95% CI –1.36 to –0.36) vs –1.37 (1.03) (95% CI –1.75 to 0.99), respectively); and (ii) there was a significant marked decrease in Change V3a–1b in the treatment group compared with the control group (–5.15 (1.56) (95% CI –5.72 to –4.57) vs –2.58 (1.68) (95% CI –3.21 to –1.96), p = 0.001, respectively). There was no significant ChangeV3a–V1b in local oxyhaemoglobin saturation, heart rate, blood pressure or perfusion index between the 2 groups and for the same group (before vs after).
Conclusion: Non-thermal, non-invasive electromagnetic induction therapy had a significant and rapid influence on unspecific back pain in the treatment group.
LAY ABSTRACT
Back pain is a health disorder of outstanding epidemiological, medical, and health economic importance. In the case of unspecific back pain, there is no clear specific cause. Electrotherapy is a physical therapy procedure using electric current for therapeutic purposes. Electromagnetic induction can influence many biological processes that are important for therapeutic interventions. A relatively new method is the use of non-invasive, very short, high-energy pulsed electromagnetic fields. Based on the literature, observations, and guidelines available up to February 2023, therapeutically successful use of electromagnetic induction appears possible, particularly in the case of high-energy pulsed electromagnetic fields. Pulsed electromagnetic fields with high-energy pulsed electromagnetic fields are therefore the logical therapeutic extension of high-energy pulsed electromagnetic fields. This study was designed to test the theory that high-energy pulsed electromagnetic fields can reduce unspecific back-pain. The application of electromagnetic induction, short high-frequency and high-energy, but non-thermal, electromagnetic pulses with a magnetic flux density of approximately 50–100 mT was found to reduce unspecific back-pain in the treatment area of the treatment group.
Downloads
References
Raspe H. Gesundheitsberichterstattung des Bundes. Rückenschmerzen 2012: 53.
Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017; 389: 736-747.
https://doi.org/10.1016/S0140-6736(16)30970-9 DOI: https://doi.org/10.1016/S0140-6736(16)30970-9
Altinbilek T, Murat S. A comparison of application frequency of physical therapy modalities in patients with chronic mechanical low back pain. Turk J Phys Med Rehabil 2020; 66: 201-209.
https://doi.org/10.5606/tftrd.2020.4192 DOI: https://doi.org/10.5606/tftrd.2020.4192
Tiktinsky R, Chen L, Narayan P. Electrotherapy: yesterday, today and tomorrow. Haemophilia 2010; 16: 126-131.
https://doi.org/10.1111/j.1365-2516.2010.02310.x DOI: https://doi.org/10.1111/j.1365-2516.2010.02310.x
Bender T, Nagy G, Barna I, Tefner I, Kadas E, Geher P. The effect of physical therapy on beta-endorphin levels. Eur J Appl Physiol 2007; 100: 371-382.
https://doi.org/10.1007/s00421-007-0469-9 DOI: https://doi.org/10.1007/s00421-007-0469-9
Xu X, Zhang H, Yan Y, Wang J, Guo L. Effects of electrical stimulation on skin surface. Acta Mech Sin 2021; 37: 1843-1871.
https://doi.org/10.1007/s10409-020-01026-2 DOI: https://doi.org/10.1007/s10409-020-01026-2
Faraday M. Experimental researches in electricity. In: London RSo, editor. Philosophical transactions of the Royal Society of London. London: Taylor; 1844, p. 331.
Markov MS. Magnetic and electromagnetic field therapy: basic principles of application for pain relief. In: Bioelectromagnetic medicine. 1st edition. Boca Raton: ImprintCRC Press; 2004.
Johnson MI. Resolving long-standing uncertainty about the clinical efficacy of transcutaneous electrical nerve stimulation (TENS) to relieve pain: a comprehensive review of factors influencing outcome. Medicina (Kaunas) 2021; 57.
https://doi.org/10.3390/medicina57040378 DOI: https://doi.org/10.3390/medicina57040378
Ropero Pelaez FJ, Taniguchi S. The gate theory of pain revisited: modeling different pain conditions with a parsimonious neurocomputational model. Neural Plast 2016; 2016: 4131395.
https://doi.org/10.1155/2016/4131395 DOI: https://doi.org/10.1155/2016/4131395
King EW, Audette K, Athman GA, Nguyen OXH, Sluka KA, Fairbanks CA. Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 2005; 115: 364-373.
https://doi.org/10.1016/j.pain.2005.03.027 DOI: https://doi.org/10.1016/j.pain.2005.03.027
Hanna H, Denzi A, Liberti M, Andre FM, Mir LM. Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields: quantitative study with calcium ions. Sci Rep 2017; 7: 13079.
https://doi.org/10.1038/s41598-017-12960-w DOI: https://doi.org/10.1038/s41598-017-12960-w
Miklavcic D, Novickij V, Kranjc M, Polajzer T, Haberl Meglic S, Batista Napotnik T, et al. Contactless electroporation induced by high intensity pulsed electromagnetic fields via distributed nanoelectrodes. Bioelectrochemistry 2020; 132: 107440.
https://doi.org/10.1016/j.bioelechem.2019.107440 DOI: https://doi.org/10.1016/j.bioelechem.2019.107440
Batista Napotnik T, Rebersek M, Vernier PT, Mali B, Miklavcic D. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 2016; 110: 1-12.
https://doi.org/10.1016/j.bioelechem.2016.02.011 DOI: https://doi.org/10.1016/j.bioelechem.2016.02.011
Chopinet L, Rols MP. Nanosecond electric pulses: a mini-review of the present state of the art. Bioelectrochemistry 2015; 103: 2-6.
https://doi.org/10.1016/j.bioelechem.2014.07.008 DOI: https://doi.org/10.1016/j.bioelechem.2014.07.008
Gaynor JS, Hagberg S, Gurfein BT. Veterinary applications of pulsed electromagnetic field therapy. Res Vet Sci 2018; 119: 1-8.
https://doi.org/10.1016/j.rvsc.2018.05.005 DOI: https://doi.org/10.1016/j.rvsc.2018.05.005
Pilla AA. Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem Biophys Res Commun 2012; 426: 330-333.
https://doi.org/10.1016/j.bbrc.2012.08.078 DOI: https://doi.org/10.1016/j.bbrc.2012.08.078
Bragin DE, Statom GL, Hagberg S, Nemoto EM. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J Neurosurg 2015; 122: 1239-1247.
https://doi.org/10.3171/2014.8.JNS132083 DOI: https://doi.org/10.3171/2014.8.JNS132083
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007; 15: 252-259.
https://doi.org/10.1007/s10787-007-0013-x DOI: https://doi.org/10.1007/s10787-007-0013-x
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev 2020; 40: 158-189.
https://doi.org/10.1002/med.21599 DOI: https://doi.org/10.1002/med.21599
Brisby H, Ashley H, Diwan AD. In vivo measurement of facet joint nitric oxide in patients with chronic low back pain. Spine (Phila Pa 1976) 2007; 32: 1488-1492.
https://doi.org/10.1097/BRS.0b013e318067dc97 DOI: https://doi.org/10.1097/BRS.0b013e318067dc97
Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012; 10: 4-18.
https://doi.org/10.2174/157016112798829760 DOI: https://doi.org/10.2174/157016112798829760
Nelson FR, Zvirbulis R, Pilla AA. Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: a randomized double-blind pilot study. Rheumatol Int 2013; 33: 2169-2173.
https://doi.org/10.1007/s00296-012-2366-8 DOI: https://doi.org/10.1007/s00296-012-2366-8
Pilla AA. Nonthermal electromagnetic fields: from first messenger to therapeutic applications. Electromagn Biol Med 2013; 32: 123-136.
https://doi.org/10.3109/15368378.2013.776335 DOI: https://doi.org/10.3109/15368378.2013.776335
Rohde C, Chiang A, Adipoju O, Casper D, Pilla AA. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast Reconstr Surg 2010; 125: 1620-1629.
https://doi.org/10.1097/PRS.0b013e3181c9f6d3 DOI: https://doi.org/10.1097/PRS.0b013e3181c9f6d3
Bodewein L, Schmiedchen K, Dechent D, Stunder D, Graefrath D, Winter L, et al. Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300Hz to 1MHz). Environ Res 2019; 171: 247-259.
https://doi.org/10.1016/j.envres.2019.01.015 DOI: https://doi.org/10.1016/j.envres.2019.01.015
Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, et al. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health 2016; 31: 363-397.
https://doi.org/10.1515/reveh-2016-0011 DOI: https://doi.org/10.1515/reveh-2016-0011
Serhier Z, Bendahhou K, Ben Abdelaziz A, Bennani MO. Fiche Méthodologique n°1: Comment calculer la taille d'un échantillon pour une étude observationnelle? Tunis Med 2020; 98: 1-7.
Lee PB, Kim YC, Lim YJ, Lee CJ, Choi SS, Park SH, et al. Efficacy of pulsed electromagnetic therapy for chronic lower back pain: a randomized, double-blind, placebo-controlled study. J Int Med Res 2006; 34: 160-167.
https://doi.org/10.1177/147323000603400205 DOI: https://doi.org/10.1177/147323000603400205
Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog scale for pain (VAS Pain), numeric rating scale for pain (NRS Pain), McGill pain questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res (Hoboken) 2011; 63: S240-252.
https://doi.org/10.1002/acr.20543 DOI: https://doi.org/10.1002/acr.20543
Raspe H. Back pain. Berlin: Robert Koch Institute; 2012.
Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, et al. Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 2006; 15: S192-300.
https://doi.org/10.1007/s00586-006-1072-1 DOI: https://doi.org/10.1007/s00586-006-1072-1
Bonelli M, Moroder E. Non-ionizing radiation: evaluation of action values in the case of complex spectrum pulsed electromagnetic fields, AIRP - Proceedings of the national convention on radiation protection "Radiation protection in the health sector": Bolzano, 2010.
Olejnik S, Algina J. Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemp Educ Psychol 2000; 25: 241-286.
https://doi.org/10.1006/ceps.2000.1040 DOI: https://doi.org/10.1006/ceps.2000.1040
Gomes FIF, Cunha FQ, Cunha TM. Peripheral nitric oxide signaling directly blocks inflammatory pain. Biochem Pharmacol 2020; 176: 113862.
https://doi.org/10.1016/j.bcp.2020.113862 DOI: https://doi.org/10.1016/j.bcp.2020.113862
Post A, Muller MB, Engelmann M, Keck ME. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci 1999; 11: 3247-3254.
https://doi.org/10.1046/j.1460-9568.1999.00747.x DOI: https://doi.org/10.1046/j.1460-9568.1999.00747.x
Nerreter W. Grundlagen der elektrotechnik. mit micro-cap und MATLAB. GmbH & Co. KG: Hanser-Verlag; 2020.
https://doi.org/10.3139/9783446465855 DOI: https://doi.org/10.3139/9783446465855
Ulaby F. Fundamentals of applied electromagnetics. 5th edition. USA: Pearson Prentice Hall; 2007.
Eschweiler G, Plewnia C, Bartels M. Gemeinsamkeiten und Unterschiede der therapeutischen transkraniellen Magnetstimulation und der Elektrokrampftherapie. Nervenheilkunde 2003; 22: 189-195.
https://doi.org/10.1055/s-0038-1624395 DOI: https://doi.org/10.1055/s-0038-1624395
Leon Ruiz M, Rodriguez Sarasa ML, Sanjuan Rodriguez L, Benito-Leon J, Garcia-Albea Ristol E, Arce Arce S. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: opening new doors to the treatment of cerebrovascular disease. Neurologia (Engl Ed) 2018; 33: 459-472.
https://doi.org/10.1016/j.nrleng.2016.03.009 DOI: https://doi.org/10.1016/j.nrleng.2016.03.009
Schambra HM. Repetitive transcranial magnetic stimulation for upper extremity motor recovery: does it help? Curr Neurol Neurosci Rep 2018; 18: 97.
https://doi.org/10.1007/s11910-018-0913-8 DOI: https://doi.org/10.1007/s11910-018-0913-8
Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001; 21: RC157.
https://doi.org/10.1523/JNEUROSCI.21-15-j0003.2001 DOI: https://doi.org/10.1523/JNEUROSCI.21-15-j0003.2001
Wang Y, Liu Z, Ge X, Hu X, Cao X, Li L, et al. Neuropathic pain releasing calcitonin gene related peptide protects against stroke in rats. Am J Transl Res 2020; 12: 54-69.
Fitzsimmons RJ, Gordon SL, Kronberg J, Ganey T, Pilla AA. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J Orthop Res 2008; 26: 854-859.
https://doi.org/10.1002/jor.20590 DOI: https://doi.org/10.1002/jor.20590
Elshiwi AM, Hamada HA, Mosaad D, Ragab IMA, Koura GM, Alrawaili SM. Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial. Braz J Phys Ther 2019; 23: 244-249.
https://doi.org/10.1016/j.bjpt.2018.08.004 DOI: https://doi.org/10.1016/j.bjpt.2018.08.004
Lisi AJ, Scheinowitz M, Saporito R, Onorato A. A pulsed electromagnetic field therapy device for non-specific low back pain: a pilot randomized controlled trial. Pain Ther 2019; 8: 133-140.
https://doi.org/10.1007/s40122-019-0119-z DOI: https://doi.org/10.1007/s40122-019-0119-z
Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med 2005; 31: 1316-1326.
https://doi.org/10.1007/s00134-005-2790-2 DOI: https://doi.org/10.1007/s00134-005-2790-2
Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl) 2014; 7: 231-239.
https://doi.org/10.2147/MDER.S47319 DOI: https://doi.org/10.2147/MDER.S47319
Adams JA, Uryash A, Lopez JR, Sackner MA. The endothelium as a therapeutic target in diabetes: a narrative review and perspective. Front Physiol 2021; 12: 638491.
https://doi.org/10.3389/fphys.2021.638491 DOI: https://doi.org/10.3389/fphys.2021.638491
Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837, 837a-837d.
https://doi.org/10.1093/eurheartj/ehr304 DOI: https://doi.org/10.1093/eurheartj/ehr304
Melikian N, Seddon MD, Casadei B, Chowienczyk PJ, Shah AM. Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc Med 2009; 19: 256-262.
https://doi.org/10.1016/j.tcm.2010.02.007 DOI: https://doi.org/10.1016/j.tcm.2010.02.007
Chan LS. Minimal clinically important difference (MCID) - adding meaning to statistical inference. Am J Public Health 2013; 103: e24-25.
https://doi.org/10.2105/AJPH.2013.301580 DOI: https://doi.org/10.2105/AJPH.2013.301580
Nuesch E, Trelle S, Reichenbach S, Rutjes AW, Burgi E, Scherer M, et al. The effects of excluding patients from the analysis in randomised controlled trials: meta-epidemiological study. BMJ 2009; 339: b3244.
https://doi.org/10.1136/bmj.b3244 DOI: https://doi.org/10.1136/bmj.b3244
McCoy CE. Understanding the intention-to-treat principle in randomized controlled trials. West J Emerg Med 2017; 18: 1075-1078.
https://doi.org/10.5811/westjem.2017.8.35985 DOI: https://doi.org/10.5811/westjem.2017.8.35985
Tripepi G, Chesnaye NC, Dekker FW, Zoccali C, Jager KJ. Intention to treat and per protocol analysis in clinical trials. Nephrology (Carlton) 2020; 25: 513-517.
https://doi.org/10.1111/nep.13709 DOI: https://doi.org/10.1111/nep.13709
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Manfred Hartard, Mohamed Amine Fenneni, Stephan Scharla, Christian Hartard, Diana Hartard, Stephan Mueller, Gabriela Botta Mendez, Helmi Ben Saad
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.