Effects of carbon versus plastic ankle foot orthoses on gait outcomes and energy cost in patients with chronic stroke

Authors

  • Diana Rimaud Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Physical Medicine and Rehabilitation Department, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
  • Rodolphe Testa Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Department of Orthopaedic Surgery, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
  • Guillaume Y. Millet Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France; Institut Universitaire de France (IUF)
  • Paul Calmels Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Physical Medicine and Rehabilitation Department, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France

DOI:

https://doi.org/10.2340/jrm.v56.35213

Keywords:

gait analysis, foot drop, ankle foot orthoses design, energy expenditure, hemiplegic patients

Abstract

Objective: To compare the walking performances of hemiplegic subjects with chronic stroke under 3 conditions: with a new standard carbon fibre ankle foot orthosis (C-AFO), with a personal custom-made plastic AFO (P-AFO), and without any orthosis (No-AFO).

Design: Randomized, controlled crossover design.

Patients: Fifteen chronic patients with stroke (3 women  and 12 men, 59 [10] years, 13 [15] years since injury).

Methods: Patients performed 3 randomized sessions (with C-AFO, P-AFO, no-AFO), consisting of a 6-min walk test (6MWT) with VO2 measurement and a clinical gait analysis. Energy cost (Cw), walking speed, spatio-temporal, kinetic, and kinematic variables were measured.

Results: No significant differences were found between the C-AFO and P-AFO conditions. Distance and walking speed in the 6MWT increased by 12% and 10% (p < 0.001) and stride width decreased by -8.7% and -13% (p < 0.0001) with P-AFO and C-AFO compared with the No-AFO condition. Cw decreased by 15% (p < 0.002), stride length increased by 10% (p < 0.01), step length on affected leg increased by 8% (p < 0.01), step length on contralateral leg by 13% (p < 0.01), and swing time on the contralateral leg increased by 6% (p < 0.01) with both AFO compared with the No-AFO condition.

Conclusion: The use of an off-the-shelf composite AFO (after a short habituation period) in patients with chronic stroke immediately improved energy cost and gait outcomes to the same extent as their usual custom-made AFO.

Downloads

Download data is not yet available.

References

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Associa-tion. Circulation 2019; 139.

Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, Graham GD, et al. Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke 2005; 36.

https://doi.org/10.1161/01.STR.0000180861.54180.FF DOI: https://doi.org/10.1161/01.STR.0000180861.54180.FF

Shrivastava S, Prabhu RK, Kirubakaran R, Thomasraj J, Sundaram B. Ankle foot orthosis for walking in stroke rehabilitation. Cochrane Stroke Group, editor. Cochrane Database of Systematic Reviews 2014; .

https://doi.org/10.1002/14651858.CD011249 DOI: https://doi.org/10.1002/14651858.CD011249

Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1995; 76: 27-32.

https://doi.org/10.1016/S0003-9993(95)80038-7 DOI: https://doi.org/10.1016/S0003-9993(95)80038-7

Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a syste-matic review of the literature. Arch Phys Med Rehabil 2002; 83: 1629-1637.

https://doi.org/10.1053/apmr.2002.35473 DOI: https://doi.org/10.1053/apmr.2002.35473

Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture 1999; 9: 207-231.

https://doi.org/10.1016/S0966-6362(99)00009-0 DOI: https://doi.org/10.1016/S0966-6362(99)00009-0

Zamparo P, Francescato MP, Luca G, Lovati L, Prampera PE. The energy cost of level wal-king in patients with hemiplegia. Scand J Med Sci Sports 2007; 5: 348-352.

https://doi.org/10.1111/j.1600-0838.1995.tb00057.x DOI: https://doi.org/10.1111/j.1600-0838.1995.tb00057.x

Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil 2001; 7: 1-18.

https://doi.org/10.1310/JB16-V04F-JAL5-H1UV DOI: https://doi.org/10.1310/JB16-V04F-JAL5-H1UV

Ivey FM, Macko RF, Ryan AS, Hafer-Macko CE. Cardiovascular health and fitness after stroke. Top Stroke Rehabil 2005; 12: 1-16.

https://doi.org/10.1310/GEEU-YRUY-VJ72-LEAR DOI: https://doi.org/10.1310/GEEU-YRUY-VJ72-LEAR

Batchelor FA, Mackintosh SF, Said CM, Hill KD. Falls after sroke. Int J Stroke 2012; 7: 482-490.

https://doi.org/10.1111/j.1747-4949.2012.00796.x DOI: https://doi.org/10.1111/j.1747-4949.2012.00796.x

Leung J, Moseley A. Impact of ankle-foot orthoses on gait and leg muscle activity in adults with hemiplegia. Physiotherapy 2003; 89: 39-55.

https://doi.org/10.1016/S0031-9406(05)60668-2 DOI: https://doi.org/10.1016/S0031-9406(05)60668-2

Totah D, Menon M, Jones-Hershinow C, Barton K, Gates DH. The impact of ankle-foot ort-hosis stiffness on gait: a systematic literature review. Gait Posture 2019; 69: 101-111.

https://doi.org/10.1016/j.gaitpost.2019.01.020 DOI: https://doi.org/10.1016/j.gaitpost.2019.01.020

Xu G, Lan Y, Huang D, Chen Z, Ding M. [Effects of ankle-foot orthosis on gait stability and balance control in patients with hemiparetic stroke]. Zhonghua Yi Xue Za Zhi 2011; 91: 890-893.

Nolan KJ, Savalia KK, Lequerica AH, Elovic EP. Objective assessment of functional am-bulation in adults with hemiplegia using ankle foot orthotics after stroke. PM R 2009; 1: 524-529.

https://doi.org/10.1016/j.pmrj.2009.04.011 DOI: https://doi.org/10.1016/j.pmrj.2009.04.011

Gök H, Küçükdeveci A, Altinkaynak H, Yavuzer G, Ergin S. Effects of ankle-foot orthoses on hemiparetic gait. Clin Rehabil 2003; 17(2): 137-139.

https://doi.org/10.1191/0269215503cr605oa DOI: https://doi.org/10.1191/0269215503cr605oa

Tyson S, Sadeghi-Demneh E, Nester C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin Rehabil 2013; 27: 879-891.

https://doi.org/10.1177/0269215513486497 DOI: https://doi.org/10.1177/0269215513486497

Daryabor A, Kobayashi T, Yamamoto S, Lyons SM, Orendurff M, Akbarzadeh Baghban A. Effect of ankle-foot orthoses on functional outcome measurements in individuals with stroke: a systematic review and meta-analysis. Disabil Rehabil 2022; 44: 6566-6581.

https://doi.org/10.1080/09638288.2021.1970248 DOI: https://doi.org/10.1080/09638288.2021.1970248

Daryabor A, Arazpour M, Aminian G. Effect of different designs of ankle-foot orthoses on gait in patients with stroke: a systematic review. Gait Posture 2018; 62: 268-279.

https://doi.org/10.1016/j.gaitpost.2018.03.026 DOI: https://doi.org/10.1016/j.gaitpost.2018.03.026

Daryabor A, Yamamoto S, Orendurff M, Kobayashi T. Effect of types of ankle-foot orthoses on energy expenditure metrics during walking in individuals with stroke: a systematic review. Disabil Rehabil 2022; 44: 166-176.

https://doi.org/10.1080/09638288.2020.1762767 DOI: https://doi.org/10.1080/09638288.2020.1762767

Choo YJ, Chang MC. Commonly used types and recent development of ankle-foot ort-hosis: a narrative review. Healthcare 2021; 9: 1046.

https://doi.org/10.3390/healthcare9081046 DOI: https://doi.org/10.3390/healthcare9081046

Wolf SI, Alimusaj M, Rettig O, Döderlein L. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele. Gait Posture 2008; 28: 175-177.

https://doi.org/10.1016/j.gaitpost.2007.11.012 DOI: https://doi.org/10.1016/j.gaitpost.2007.11.012

Bregman DJJ, Harlaar J, Meskers CGM, de Groot V. Spring-like ankle foot orthoses reduce the energy cost of walking by taking over ankle work. Gait Posture 2012; 35: 148-153.

https://doi.org/10.1016/j.gaitpost.2011.08.026 DOI: https://doi.org/10.1016/j.gaitpost.2011.08.026

Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic pa-tient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 1975; 7: 13-31.

https://doi.org/10.2340/1650197771331 DOI: https://doi.org/10.2340/1650197771331

Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy 1987; 67: 206-207.

https://doi.org/10.1093/ptj/67.2.206 DOI: https://doi.org/10.1093/ptj/67.2.206

Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J 2014; 44: 1428-1446.

https://doi.org/10.1183/09031936.00150314 DOI: https://doi.org/10.1183/09031936.00150314

Borg G. Borg's perceived exertion and pain scales.In: Human Kinetics; 1998, p105-112. ISBN: 0-88011-623-4.

Danielsson A, Sunnerhagen KS. Energy expenditure in stroke subjects walking with a carbon composite ankle foot orthosis. J Rehabil Med 2004; 36(4): 165-168.

https://doi.org/10.1080/16501970410025126 DOI: https://doi.org/10.1080/16501970410025126

Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG. A new anatomically based protocol for gait analysis in children. Gait Posture 2007; 26: 560-571.

https://doi.org/10.1016/j.gaitpost.2006.12.018 DOI: https://doi.org/10.1016/j.gaitpost.2006.12.018

Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human jo-int motion, part I: Ankle, hip, and spine. International Society of Biomechanics. J Biomech 2002; 35: 543-548.

https://doi.org/10.1016/S0021-9290(01)00222-6 DOI: https://doi.org/10.1016/S0021-9290(01)00222-6

Choo YJ, Chang MC. Effectiveness of an ankle-foot orthosis on walking in patients with stroke: a systematic review and meta-analysis. Sci Rep 2021; 11: 15879.

https://doi.org/10.1038/s41598-021-95449-x DOI: https://doi.org/10.1038/s41598-021-95449-x

Franceschini M, Massucci M, Ferrari L, Agosti M, Paroli C. Effects of an ankle-foot orthosis on spatiotemporal parameters and energy cost of hemiparetic gait. Clin Rehabil 2003; 17: 368-372.

https://doi.org/10.1191/0269215503cr622oa DOI: https://doi.org/10.1191/0269215503cr622oa

Martin PE, Rothstein DE, Larish DD. Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol (1985) 1992; 73: 200-206.

https://doi.org/10.1152/jappl.1992.73.1.200 DOI: https://doi.org/10.1152/jappl.1992.73.1.200

Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy post-stroke. Neurorehabil Neural Repair 2009; 23: 529-534.

https://doi.org/10.1177/1545968308328732 DOI: https://doi.org/10.1177/1545968308328732

Awad LN, Knarr BA, Kudzia P, Buchanan TS. The interplay between walking speed, eco-nomy, and stability after stroke. J Neurol Phys Ther 2023; 47: 75-83.

https://doi.org/10.1097/NPT.0000000000000431 DOI: https://doi.org/10.1097/NPT.0000000000000431

Ramstrand N, Ramstrand S. AAOP state-of-the-science evidence report: the effect of ankle-foot orthoses on balance-a systematic review. J Prosthetics Orthotics 2010; 22: 4-23.

https://doi.org/10.1097/JPO.0b013e3181f379b7 DOI: https://doi.org/10.1097/JPO.0b013e3181f379b7

Bleyenheuft C, Caty G, Lejeune T, Detrembleur C. Assessment of the Chignon® dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults. Annales de Réadaptation et de Médecine Physique 2008; 51: 154-160.

https://doi.org/10.1016/j.annrmp.2007.12.005 DOI: https://doi.org/10.1016/j.annrmp.2007.12.005

Slijper A, Danielsson A, Willén C. Ambulatory function and perception of confidence in persons with stroke with a custom-made hinged versus a standard ankle foot orthosis. Rehabil Res Pract 2012; 2012: 1-6.

https://doi.org/10.1155/2012/206495 DOI: https://doi.org/10.1155/2012/206495

Thijssen DH, Paulus R, van Uden CJ, Kooloos JG, Hopman MT. Decreased energy cost and improved gait pattern using a new orthosis in persons with long-term stroke. Arch Phys Med Rehabil 2007; 88: 181-186.

https://doi.org/10.1016/j.apmr.2006.11.014 DOI: https://doi.org/10.1016/j.apmr.2006.11.014

Erel S, Uygur F, Engin Simsek I, Yakut Y. The effects of dynamic ankle-foot orthoses in chronic stroke patients at three-month follow-up: a randomized controlled trial. Clin Re-habil 2011; 25: 515-523.

https://doi.org/10.1177/0269215510390719 DOI: https://doi.org/10.1177/0269215510390719

Shahabi S, Shabaninejad H, Kamali M, Jalali M, Ahmadi Teymourlouy A. The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2020; 34: 145-159.

https://doi.org/10.1177/0269215519887784 DOI: https://doi.org/10.1177/0269215519887784

Published

2024-08-23

How to Cite

Rimaud, D., Testa, R., Millet, G. Y., & Calmels, P. (2024). Effects of carbon versus plastic ankle foot orthoses on gait outcomes and energy cost in patients with chronic stroke. Journal of Rehabilitation Medicine, 56, jrm35213. https://doi.org/10.2340/jrm.v56.35213

Issue

Section

Original Report

Categories