Efficacy of a new video observational training method (intensive visual simulation) for motor recovery in the upper limb in subacute stroke: a feasibility and proof-of-concept study
DOI:
https://doi.org/10.2340/jrm.v56.36119Keywords:
Equipment and Supplies, Evaluation Study, Feedback, Sensory, Hemiplegia, Stroke Rehabilitation, Upper ExtremityAbstract
Objective: To demonstrate the feasibility and efficacy of a new video-observation training method (intensive visual simulation) to improve upper limb function.
Design: Small sample, randomized, evaluator-blind, monocentric study.
Patients: Seventeen early subacute ischaemic stroke patients with complete hemiplegia were randomly assigned to the therapeutic group (n = 8) or control group (CG, n = 9).
Methods: Thirty sessions of intensive visual simulation combined with corrected visual feedback (therapeutic group) or uncorrected visual feedback (control group) were performed over 6 weeks on top of a standard rehabilitation programme. Main outcome measure: 400-point hand assessment test (400p-HA). Secondary outcome measures: Box and Blocks (B&B), Purdue Pegboard test, Minnesota.
Results: The 400p-HA test improved significantly from T0 to 6 months for both groups, with a significant difference between groups at 3 months (MW-UT p = 0.046) and 4 months (MW-UT p = 0.046) in favour of the therapeutic group. One-phase exponential modelling of 400p-HA showed a greater plateau for the therapeutic group (F test p = 0.0021). There was also faster recovery of the ability to perform the B&B tests for the therapeutic group (log-rank test p = 0.03).
Conclusion: This study demonstrated the feasibility and potential efficacy of an intensive visual simulation training programme to improve upper limb function in subacute stroke patients. A larger study is needed to confirm these results.
Downloads
References
Kyu HH, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1859-1922.
https://doi.org/10.1016/S0140-6736(18)32335-3 DOI: https://doi.org/10.1016/S0140-6736(18)32335-3
Clery A, Bhalla A, Rudd AG, Wolfe CDA, Wang Y. Trends in prevalence of acute stroke impairments: a population-based cohort study using the South London Stroke Register. Willey JZ, editor. PLOS Med 2020; 17: e1003366.
https://doi.org/10.1371/journal.pmed.1003366 DOI: https://doi.org/10.1371/journal.pmed.1003366
Vliet R, Selles RW, Andrinopoulou E, Nijland R, Ribbers GM, Frens MA, et al. Predicting upper limb motor impairment recovery after stroke: a mixture model. Ann Neurol 2020; 87: 383-393.
https://doi.org/10.1002/ana.25679 DOI: https://doi.org/10.1002/ana.25679
Hayward KS, Kramer SF, Dalton EJ, Hughes GR, Brodtmann A, Churilov L, et al. Timing and dose of upper limb motor intervention after stroke: a systematic review. Stroke 2021; 52: 3706-3717.
https://doi.org/10.1161/STROKEAHA.121.034348 DOI: https://doi.org/10.1161/STROKEAHA.121.034348
Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442.
https://doi.org/10.3389/fnhum.2016.00442 DOI: https://doi.org/10.3389/fnhum.2016.00442
Thieme H, Morkisch N, Rietz C, Dohle C, Borgetto B. The efficacy of movement representation techniques for treatment of limb pain: a systematic review and meta-analysis. J Pain 2016; 17: 167-180.
https://doi.org/10.1016/j.jpain.2015.10.015 DOI: https://doi.org/10.1016/j.jpain.2015.10.015
Ramachandran V. The perception of phantom limbs. The D. O. Hebb lecture. Brain 1998; 121: 1603-1630.
https://doi.org/10.1093/brain/121.9.1603 DOI: https://doi.org/10.1093/brain/121.9.1603
Ramachandran VS, Altschuler EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009; 132: 1693-1710.
https://doi.org/10.1093/brain/awp135 DOI: https://doi.org/10.1093/brain/awp135
Thieme H, Morkisch N, Mehrholz J, Pohl M, Behrens J, Borgetto B, et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev 2018; 7: CDCD008449.
https://doi.org/10.1002/14651858.CD008449.pub3 DOI: https://doi.org/10.1002/14651858.CD008449.pub3
Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev 2014; 2014: CD010820.
https://doi.org/10.1002/14651858.CD010820.pub2 DOI: https://doi.org/10.1002/14651858.CD010820.pub2
Barclay RE, Stevenson TJ, Poluha W, Semenko B, Schubert J. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev 2020; 2020; 5: CD005950.
https://doi.org/10.1002/14651858.CD005950.pub5 DOI: https://doi.org/10.1002/14651858.CD005950.pub5
Sun Y, Wei W, Luo Z, Gan H, Hu X. Improving motor imagery practice with synchronous action observation in stroke patients. Top Stroke Rehabil 2016; 23: 245-253.
https://doi.org/10.1080/10749357.2016.1141472 DOI: https://doi.org/10.1080/10749357.2016.1141472
Giraux P, Sirigu A. Illusory movements of the paralyzed limb restore motor cortex activity. NeuroImage 2003; 20: S107-S111.
https://doi.org/10.1016/j.neuroimage.2003.09.024 DOI: https://doi.org/10.1016/j.neuroimage.2003.09.024
Mercier C, Sirigu A. Training with virtual visual feedback to alleviate phantom limb pain. Neurorehabil Neural Repair 2009; 23: 587-594.
https://doi.org/10.1177/1545968308328717 DOI: https://doi.org/10.1177/1545968308328717
Gable C, Xenard J, Makiela E, Chau N. Evaluation fonctionnelle de la main. Bilan 400 points et tests chiffrés. Ann Réadapt Médecine Phys 1997; 40: 95-101.
https://doi.org/10.1016/S0168-6054(97)83377-6 DOI: https://doi.org/10.1016/S0168-6054(97)83377-6
Gable C, Kandel M, Moureau F, Beer L, Chau N, Paysant J. Étude de reproductibilité de la cotation du « Bilan 400 points », une mesure de capacité fonctionnelle de la main. Chir Main 2012; 31: 76-82.
https://doi.org/10.1016/j.main.2012.01.008 DOI: https://doi.org/10.1016/j.main.2012.01.008
Konzelmann M, Burrus C, Gable C, Luthi F, Paysant J. Prospective multicentre validation study of a new standardised version of the 400-point hand assessment. BMC Musculoskelet Disord 2020; 21: 313.
https://doi.org/10.1186/s12891-020-03303-4 DOI: https://doi.org/10.1186/s12891-020-03303-4
Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther 1985; 39: 386-391.
https://doi.org/10.5014/ajot.39.6.386 DOI: https://doi.org/10.5014/ajot.39.6.386
Ashford S, Slade M, Malaprade F, Turner-Stokes L. Evaluation of functional outcome measures for the hemiparetic upper limb: a systematic review. J Rehabil Med 2008; 40: 787-795.
https://doi.org/10.2340/16501977-0276 DOI: https://doi.org/10.2340/16501977-0276
Chen H-M, Chen CC, Hsueh I-P, Huang S-L, Hsieh C-L. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair 2009; 23: 435-440.
https://doi.org/10.1177/1545968308331146 DOI: https://doi.org/10.1177/1545968308331146
Gloss DS, Wardle MG. Use of the Minnesota rate of manipulation test for disability evaluation. Percept Mot Skills 1982; 55: 527-532.
https://doi.org/10.2466/pms.1982.55.2.527 DOI: https://doi.org/10.2466/pms.1982.55.2.527
Morkisch N, Thieme H, Dohle C. How to perform mirror therapy after stroke? Evidence from a meta-analysis. Restor Neurol Neurosci 2019; 37: 421-435.
https://doi.org/10.3233/RNN-190935 DOI: https://doi.org/10.3233/RNN-190935
Lundquist CB, Nguyen BT, Hvidt TB, Stabel HH, Christensen JR, Brunner I. Changes in upper limb capacity and performance in the early and late subacute phase after stroke. J Stroke Cerebrovasc Dis 2022; 31: 106590.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106590 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106590
Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2017; 12: 451-461.
https://doi.org/10.1177/1747493017711813 DOI: https://doi.org/10.1177/1747493017711813
Hoermann S, Hale L, Winser SJ, Regenbrecht H. Augmented Reflection Technology for Stroke Rehabilitation - A clinical feasibility study. Proc. 9th Intl Conf. Disability, Virtual Reality & Associated Technologies (ICDVRAT), Laval, France, 10-12 Sept. 2012; ISBN 978-0-7049-1545-9
Hoermann S, Ferreira dos Santos L, Morkisch N, Jettkowski K, Sillis M, Devan H, et al. Computerised mirror therapy with Augmented Reflection Technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy. Disabil Rehabil 2017; 39: 1503-1514.
https://doi.org/10.1080/09638288.2017.1291765 DOI: https://doi.org/10.1080/09638288.2017.1291765
Ding L, Wang X, Chen S, Wang H, Tian J, Rong J, et al. Camera-based mirror visual input for priming promotes motor recovery, daily function, and brain network segregation in subacute stroke patients. Neurorehabil Neural Repair 2019; 33: 307-318.
https://doi.org/10.1177/1545968319836207 DOI: https://doi.org/10.1177/1545968319836207
Kim H, Kim J, Jo S, Lee K, Kim J, Song C. Video augmented mirror therapy for upper extremity rehabilitation after stroke: a randomized controlled trial. J Neurol 2023; 270: 831-842.
https://doi.org/10.1007/s00415-022-11410-6 DOI: https://doi.org/10.1007/s00415-022-11410-6
Jo S, Kim H, Song C. A Novel approach to increase attention during mirror therapy among stroke patients: a video-based behavioral analysis. Brain Sci 2022; 12: 297.
https://doi.org/10.3390/brainsci12030297 DOI: https://doi.org/10.3390/brainsci12030297
Santisteban L, Térémetz M, Bleton J-P, Baron J-C, Maier MA, Lindberg PG. Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. Plos One 2016; 11: e0154792.
https://doi.org/10.1371/journal.pone.0154792 DOI: https://doi.org/10.1371/journal.pone.0154792
Risso G, Bassolino M. Assess and rehabilitate body representations via (neuro)robotics: an emergent perspective. Front Neurorobotics 2022; 16: 964720.
https://doi.org/10.3389/fnbot.2022.964720 DOI: https://doi.org/10.3389/fnbot.2022.964720
Published
How to Cite
License
Copyright (c) 2024 Etienne Ojardias, Ahmed Adham, Hugo Bessaguet, Virginie Phaner, Diana Rimaud, Pascal Giraux
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.