Risk-taking behaviour and executive functions, a major component of the risk of fall factors after recent stroke
DOI:
https://doi.org/10.2340/jrm.v56.40153Keywords:
behaviour, executive functions, fall, strokeAbstract
Objective: This study investigated the weight of different cognitive disorders on patient behaviour influencing the risk of falls after recent stroke.
Design: Survey and retrospective monocentric study.
Subjects/patients: 74 professionals/108 patients.
Methods: Survey of professionals to ask for their thoughts concerning the weight of different cognitive disorders on the risk of falls and a retrospective study of patients post-stroke to determine whether these cognitive deficits could distinguish fallers from non-fallers. Univariate and multivariate logistic regression analyses were conducted.
Results: In part 1, major cognitive disorders identified were anosognosia, confusion, inattention, precipitation, and unilateral spatial neglect. In part 2, 25 patients (23%) were fallers. After adjustment for length of rehabilitation stay and disease severity, on multivariate analysis, the cognitive disorders significantly associated with risk of falls were anosognosia (odds ratio 16), precipitation (13.3), inattention (8.3), and perseveration (4.9). Unilateral spatial neglect was not independently associated. Aphasia did not play a role.
Conclusion: Some cognitive disorders, easily identified before any neuropsychological assessment, strongly modify patient behaviour in terms of risk of falls. It is proposed that these disorders should not be considered as an additional factor along with physical and general factors but rather as a multiplying factor applied to the others.
Downloads
References
Persson CU, Hansson PO. Determinants of falls after stroke based on data on 5065 patients from the Swedish Väststroke and Riksstroke Registers. Sci Rep 2021; 11: 24035.
https://doi.org/10.1038/s41598-021-03375-9 DOI: https://doi.org/10.1038/s41598-021-03375-9
Persson CU, Kjellberg S, Lernfelt B, Westerlind E, Cruce M, Hansson PO. Risk of falling in a stroke unit after acute stroke: The Fall Study of Gothenburg (FallsGOT). Clin Rehabil 2018; 32: 398-409.
https://doi.org/10.1177/0269215517728325 DOI: https://doi.org/10.1177/0269215517728325
Breisinger TP, Skidmore ER, Niyonkuru C, Terhorst L, Campbell GB. The Stroke Assessment of Fall Risk (SAFR): predictive validity in inpatient stroke rehabilitation. Clin Rehabil 2014; 2812: 1218-1224.
https://doi.org/10.1177/0269215514534276 DOI: https://doi.org/10.1177/0269215514534276
Yang C, Ghaedi B, Campbell TM, Rutkowski N, Finestone H. Predicting Falls Using the Stroke Assessment of Fall Risk Tool. PM R 2021; 13: 274-281.
https://doi.org/10.1002/pmrj.12434 DOI: https://doi.org/10.1002/pmrj.12434
Nyberg L, Gustafson Y. Fall prediction index for patients in stroke rehabilitation. Stroke 1997; 28: 716-721.
https://doi.org/10.1161/01.STR.28.4.716 DOI: https://doi.org/10.1161/01.STR.28.4.716
Teasell R, McRae M, Foley N, Bhardwaj A. The incidence and consequences of falls in stroke patients during inpatient rehabilitation: factors associated with high risk. Arch Phys Med Rehabil 2002; 83: 329-333.
https://doi.org/10.1053/apmr.2002.29623 DOI: https://doi.org/10.1053/apmr.2002.29623
Mackintosh SF, Hill KD, Dodd KJ, Goldie PA, Culham EG. Balance score and a history of falls in hospital predict recurrent falls in the 6 months following stroke rehabilitation. Arch Phys Med Rehabil 2006; 87: 1583-1589.
https://doi.org/10.1016/j.apmr.2006.09.004 DOI: https://doi.org/10.1016/j.apmr.2006.09.004
Baetens T, De Kegel A, Calders P, Vanderstraeten G, Cambier D. Prediction of falling among stroke patients in rehabilitation. J Rehabil Med 2011; 43: 876-883.
https://doi.org/10.2340/16501977-0873 DOI: https://doi.org/10.2340/16501977-0873
Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ 1995; 3119: 83-86.
https://doi.org/10.1136/bmj.311.6997.83 DOI: https://doi.org/10.1136/bmj.311.6997.83
Andersson AG, Kamwendo K, Seiger A, Appelros P. How to identify potential fallers in a stroke unit: validity indexes of 4 test methods. J Rehabil Med 2006; 38: 186-191.
https://doi.org/10.1080/16501970500478023 DOI: https://doi.org/10.1080/16501970500478023
Ashburn A, Hyndman D, Pickering R, Yardley L, Harris S. Predicting people with stroke at risk of falls. Age Ageing 2008; 37: 270-276.
https://doi.org/10.1093/ageing/afn066 DOI: https://doi.org/10.1093/ageing/afn066
Tilson JK, Wu SS, Cen SY, Feng Q, Rose DR, Behrman AL et al. Characterizing and identifying risk for falls in the LEAPS study: a randomized clinical trial of interventions to improve walking poststroke. Stroke 2012; 43: 446-452.
https://doi.org/10.1161/STROKEAHA.111.636258 DOI: https://doi.org/10.1161/STROKEAHA.111.636258
Abdollahi M, Whitton N, Zand R, Dombovy M, Parnianpour M, Khalaf K, et al. A systematic review of fall risk factors in stroke survivors: towards improved assessment platforms and protocols. Front Bioeng Biotechnol 2022; 10: 910698.
https://doi.org/10.3389/fbioe.2022.910698 DOI: https://doi.org/10.3389/fbioe.2022.910698
Alemdaroglu E, Ucan H, Topcuoglu AM, Sivas F. In-hospital predictors of falls in community-dwelling individuals after stroke in the first 6 months after a baseline evaluation: A prospective cohort study. Arch. Phys. Med. Rehabil 2012; 93: 2244-2250.
https://doi.org/10.1016/j.apmr.2012.06.014 DOI: https://doi.org/10.1016/j.apmr.2012.06.014
Saverino A, Waller D, Rantell K, Parry R, Moriarty A, Playford ED. The role of cognitive factors in predicting balance and fall risk in a neuro-rehabilitation setting. PLoS One 2016; 11: e0153469.
https://doi.org/10.1371/journal.pone.0153469 DOI: https://doi.org/10.1371/journal.pone.0153469
Mateen BA, Bussas M, Doogan C, Waller D, Saverino A, Király FJ, et al. The Trail Making test: a study of its ability to predict falls in the acute neurological in-patient population. Clin Rehabil 2018; 32:1396-1405
https://doi.org/10.1177/0269215518771127 DOI: https://doi.org/10.1177/0269215518771127
Garcia-Rudolph A, Garcia-Molina A, Opisso E, Tormos JM, Bernabeu M. Cognition assessments to predict inpatient falls in a subacute stroke rehabilitation setting. Top Stroke Rehabil 2021; 28: 52-60.
https://doi.org/10.1080/10749357.2020.1765660 DOI: https://doi.org/10.1080/10749357.2020.1765660
Fugl-Meyer AR. The Post-troke hemiplegic patient. Scand J Rehab Med 1975; 7: 13-31
https://doi.org/10.2340/1650197771331 DOI: https://doi.org/10.2340/1650197771331
Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 1995; 27: 27‑36.
https://doi.org/10.2340/1650197719952736 DOI: https://doi.org/10.2340/1650197719952736
Benaim C, Pérennou DA, Villy J, Rousseaux M, Pelissier JY. Validation of a standardized assessment of postural control in stroke patients: the Postural Assessment Scale for Stroke Patients (PASS). Stroke 1999; 30: 1862‑1868.
https://doi.org/10.1161/01.STR.30.9.1862 DOI: https://doi.org/10.1161/01.STR.30.9.1862
Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142-148.
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x DOI: https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
Tinetti M.E. Performance assessment of mobility problems in elderly patients. J Am Geriatr Soc 1986; 34: 119-126
https://doi.org/10.1111/j.1532-5415.1986.tb05480.x DOI: https://doi.org/10.1111/j.1532-5415.1986.tb05480.x
Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys Ther 2009; 89: 484-498.
https://doi.org/10.2522/ptj.20080071 DOI: https://doi.org/10.2522/ptj.20080071
Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest. J Rehabil Med 2010; 42: 323-331.
https://doi.org/10.2340/16501977-0537 DOI: https://doi.org/10.2340/16501977-0537
Lubarsky S, Charlin B, Cook DA, Chalk C, van der Vleuten CP. Script concordance testing: a review of published validity evidence. Med Educ 2011; 45: 329-338.
https://doi.org/10.1111/j.1365-2923.2010.03863.x DOI: https://doi.org/10.1111/j.1365-2923.2010.03863.x
Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM. Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci 2010; 65: 1086-1092.
https://doi.org/10.1093/gerona/glq077 DOI: https://doi.org/10.1093/gerona/glq077
van Nes IJ, van der Linden S, Hendricks HT, van Kuijk AA, Rulkens M, Verhagen WI et al. Is visuospatial hemineglect really a determinant of postural control following stroke? An acute-phase study. Neurorehabil Neural Repair 2009; 23: 609-614.
https://doi.org/10.1177/1545968308328731 DOI: https://doi.org/10.1177/1545968308328731
Gothe NP, Fanning J, Awick E, Chung D, Wójcicki TR, Olson EA et al. Executive function processes predict mobility outcomes in older adults. J Am Geriatr Soc 2014; 62: 285-290
https://doi.org/10.1111/jgs.12654 DOI: https://doi.org/10.1111/jgs.12654
Kearney FC, Harwood RH, Gladman JRF, Lincoln N, Masud T. The relationship between executive function and falls and gait abnormalities in older adults: A systematic review. Dement. Geriatr. Cogn. Disord 2013; 36: 20-35.
https://doi.org/10.1159/000350031 DOI: https://doi.org/10.1159/000350031
Tuena C, Mancuso V, Benzi IMA, Cipresso P, Chirico A, Goulene KM, et al. Executive functions are associated with fall risk but not balance in chronic cerebrovascular disease. J Clin Med 2020; 9: 3405.
https://doi.org/10.3390/jcm9113405 DOI: https://doi.org/10.3390/jcm9113405
Liu-Ambrose T, Pang MY, Eng JJ. Executive function is independently associated with performances of balance and mobility in community-dwelling older adults after mild stroke: implications for falls prevention. Cerebrovasc Dis 2007; 23: 203-210.
https://doi.org/10.1159/000097642 DOI: https://doi.org/10.1159/000097642
Påhlman U, Sävborg M, Tarkowski E. Cognitive dysfunction and physical activity after stroke: the Gothenburg cognitive stroke study in the elderly. J Stroke Cerebrovasc Dis 2012; 21: 652-658.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.02.012 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.02.012
Rapport LJ, Webster JS, Flemming KL, Lindberg JW, Godlewski MC, Brees JE et al. Predictors of falls among right-hemisphere stroke patients in the rehabilitation setting. Arch Phys Med Rehabil 1993; 74: 621-626.
https://doi.org/10.1016/0003-9993(93)90160-C DOI: https://doi.org/10.1016/0003-9993(93)90160-C
Xu T, Clemson L, O'Loughlin K, Lannin NA, Dean C, Koh G. Risk factors for falls in community stroke survivors: a systematic review and meta-analysis. Arch Phys Med Rehabil 2018; 99: 563-573.e5.
https://doi.org/10.1016/j.apmr.2017.06.032 DOI: https://doi.org/10.1016/j.apmr.2017.06.032
Oliver D, Britton M, Seed P, Martin FC, Hopper AH. Development and evaluation of evidence-based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort studies. BMJ 1997; 315: 1049‑1053.
https://doi.org/10.1136/bmj.315.7115.1049 DOI: https://doi.org/10.1136/bmj.315.7115.1049
Morse JM, Morse RM, Tylko SJ. Development of a scale to identify the fall-prone patient. Canadian J. on Aging 1989; 8: 366-377.
https://doi.org/10.1017/S0714980800008576 DOI: https://doi.org/10.1017/S0714980800008576
Poe SS, Dawson PB, Cvach M, Burnett M, Kumble S, Lewis M, et al. The Johns Hopkins Fall Risk Assessment Tool: A Study of Reliability and Validity. J Nurs Care Qual 2018; 33: 10-19.
https://doi.org/10.1097/NCQ.0000000000000301 DOI: https://doi.org/10.1097/NCQ.0000000000000301
Hendrich AL, Bender PS, Nyhuis A. Validation of the Hendrich II Fall Risk Model: a large concurrent case/control study of hospitalized patients. Appl Nurs Res 2003; 16: 9-21. DOI: https://doi.org/10.1053/apnr.2003.YAPNR2
https://doi.org/10.1053/apnr.2003.016009 DOI: https://doi.org/10.1053/apnr.2003.016009
O'Connell B, Myers H. The sensitivity and specificity of the Morse Fall Scale in an acute care setting. J Clin Nurs 2002; 11: 134‑136.
https://doi.org/10.1046/j.1365-2702.2002.00578.x DOI: https://doi.org/10.1046/j.1365-2702.2002.00578.x
Park SH. Tools for assessing fall risk in the elderly: a systematic review and meta-analysis. Aging Clin Exp Res 2018; 30: 1‑16.
https://doi.org/10.1007/s40520-017-0749-0 DOI: https://doi.org/10.1007/s40520-017-0749-0
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Alain P. Yelnik, Ines Dekimèche, Emna Jelili, Ioannis Bargiotas, Marylène Jousse, Johann Beaudreuil, Alexis Schnitzler
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.